全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dengue Virus Co-opts UBR4 to Degrade STAT2 and Antagonize Type I Interferon Signaling

DOI: 10.1371/journal.ppat.1003265

Full-Text   Cite this paper   Add to My Lib

Abstract:

An estimated 50 million dengue virus (DENV) infections occur annually and more than forty percent of the human population is currently at risk of developing dengue fever (DF) or dengue hemorrhagic fever (DHF). Despite the prevalence and potential severity of DF and DHF, there are no approved vaccines or antiviral therapeutics available. An improved understanding of DENV immune evasion is pivotal for the rational development of anti-DENV therapeutics. Antagonism of type I interferon (IFN-I) signaling is a crucial mechanism of DENV immune evasion. DENV NS5 protein inhibits IFN-I signaling by mediating proteasome-dependent STAT2 degradation. Only proteolytically-processed NS5 can efficiently mediate STAT2 degradation, though both unprocessed and processed NS5 bind STAT2. Here we identify UBR4, a 600-kDa member of the N-recognin family, as an interacting partner of DENV NS5 that preferentially binds to processed NS5. Our results also demonstrate that DENV NS5 bridges STAT2 and UBR4. Furthermore, we show that UBR4 promotes DENV-mediated STAT2 degradation, and most importantly, that UBR4 is necessary for efficient viral replication in IFN-I competent cells. Our data underscore the importance of NS5-mediated STAT2 degradation in DENV replication and identify UBR4 as a host protein that is specifically exploited by DENV to inhibit IFN-I signaling via STAT2 degradation.

References

[1]  Chen R, Vasilakis N (2011) Dengue–quo tu et quo vadis? Viruses 3: 1562–1608. doi: 10.3390/v3091562
[2]  Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, et al. (1985) Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229: 726–733. doi: 10.1126/science.4023707
[3]  Coia G, Parker MD, Speight G, Byrne ME, Westaway EG (1988) Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. J Gen Virol 69 (Pt 1) 1–21. doi: 10.1099/0022-1317-69-1-1
[4]  Lindenbach BD, Rice CM (2003) Molecular biology of flaviviruses. Adv Virus Res 59: 23–61. doi: 10.1016/s0065-3527(03)59002-9
[5]  Chu PW, Westaway EG (1987) Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro. Virology 157: 330–337. doi: 10.1016/0042-6822(87)90275-3
[6]  Egloff MP, Benarroch D, Selisko B, Romette JL, Canard B (2002) An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21: 2757–2768. doi: 10.1093/emboj/21.11.2757
[7]  Zhou Y, Ray D, Zhao Y, Dong H, Ren S, et al. (2007) Structure and function of flavivirus NS5 methyltransferase. J Virol 81: 3891–3903. doi: 10.1128/jvi.02704-06
[8]  Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, et al. (2009) The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15: 2340–2350. doi: 10.1261/rna.1609709
[9]  Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, et al. (2010) 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468: 452–456. doi: 10.1038/nature09489
[10]  Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, et al. (2005) Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79: 12828–12839. doi: 10.1128/jvi.79.20.12828-12839.2005
[11]  Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL (2006) Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80: 5908–5918. doi: 10.1128/jvi.02714-05
[12]  Werme K, Wigerius M, Johansson M (2008) Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol 10: 696–712. doi: 10.1111/j.1462-5822.2007.01076.x
[13]  Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83: 5408–5418. doi: 10.1128/jvi.02188-08
[14]  Mazzon M, Jones M, Davidson A, Chain B, Jacobs M (2009) Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 200: 1261–1270. doi: 10.1086/605847
[15]  Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, et al. (2010) The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84: 3503–3515. doi: 10.1128/jvi.01161-09
[16]  Morrison J, Aguirre S, Fernandez-Sesma A (2012) Innate immunity evasion by dengue virus. Viruses 4: 397–413. doi: 10.3390/v4030397
[17]  Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, et al. (1999) The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene 18: 5727–5737. doi: 10.1038/sj.onc.1202960
[18]  Miller DM, Zhang Y, Rahill BM, Waldman WJ, Sedmak DD (1999) Human cytomegalovirus inhibits IFN-alpha-stimulated antiviral and immunoregulatory responses by blocking multiple levels of IFN-alpha signal transduction. J Immunol 162: 6107–6113.
[19]  Parisien JP, Lau JF, Rodriguez JJ, Sullivan BM, Moscona A, et al. (2001) The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283: 230–239. doi: 10.1006/viro.2001.0856
[20]  Parisien JP, Lau JF, Rodriguez JJ, Ulane CM, Horvath CM (2002) Selective STAT protein degradation induced by paramyxoviruses requires both STAT1 and STAT2 but is independent of alpha/beta interferon signal transduction. J Virol 76: 4190–4198. doi: 10.1128/jvi.76.9.4190-4198.2002
[21]  Vidy A, Chelbi-Alix M, Blondel D (2005) Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. J Virol 79: 14411–14420. doi: 10.1128/jvi.79.22.14411-14420.2005
[22]  Mackenzie JM, Khromykh AA, Parton RG (2007) Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2: 229–239. doi: 10.1016/j.chom.2007.09.003
[23]  Morrison JM, Racaniello VR (2009) Proteinase 2Apro is essential for enterovirus replication in type I interferon-treated cells. J Virol 83: 4412–4422. doi: 10.1128/jvi.02177-08
[24]  Valmas C, Grosch MN, Schumann M, Olejnik J, Martinez O, et al. (2010) Marburg virus evades interferon responses by a mechanism distinct from Ebola virus. PLoS Pathog 6: e1000721. doi: 10.1371/journal.ppat.1000721
[25]  Hollidge BS, Weiss SR, Soldan SS (2011) The role of interferon antagonist, non-structural proteins in the pathogenesis and emergence of arboviruses. Viruses 3: 629–658. doi: 10.3390/v3060629
[26]  Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3: 920–940. doi: 10.3390/v3060920
[27]  Stark GR, Darnell JE Jr (2012) The JAK-STAT pathway at twenty. Immunity 36: 503–514. doi: 10.1016/j.immuni.2012.03.013
[28]  Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282: 20059–20063. doi: 10.1074/jbc.r700016200
[29]  Der SD, Zhou A, Williams BR, Silverman RH (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95: 15623–15628. doi: 10.1073/pnas.95.26.15623
[30]  de Veer MJ, Holko M, Frevel M, Walker E, Der S, et al. (2001) Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol 69: 912–920.
[31]  Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485. doi: 10.1038/nature09907
[32]  Schoggins JW, Rice CM (2012) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1: 519–525. doi: 10.1016/j.coviro.2011.10.008
[33]  Rodriguez-Madoz JR, Belicha-Villanueva A, Bernal-Rubio D, Ashour J, Ayllon J, et al. (2010) Inhibition of the type I interferon response in human dendritic cells by dengue virus infection requires a catalytically active NS2B3 complex. J Virol 84: 9760–9774. doi: 10.1128/jvi.01051-10
[34]  Rodriguez-Madoz JR, Bernal-Rubio D, Kaminski D, Boyd K, Fernandez-Sesma A (2010) Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol 84: 4845–4850. doi: 10.1128/jvi.02514-09
[35]  Munoz-Jordan JL, Sanchez-Burgos GG, Laurent-Rolle M, Garcia-Sastre A (2003) Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100: 14333–14338. doi: 10.1073/pnas.2335168100
[36]  Munoz-Jordan JL, Laurent-Rolle M, Ashour J, Martinez-Sobrido L, Ashok M, et al. (2005) Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79: 8004–8013. doi: 10.1128/jvi.79.13.8004-8013.2005
[37]  Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, et al. (2005) Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79: 5414–5420. doi: 10.1128/jvi.79.9.5414-5420.2005
[38]  Ho LJ, Hung LF, Weng CY, Wu WL, Chou P, et al. (2005) Dengue virus type 2 antagonizes IFN-alpha but not IFN-gamma antiviral effect via down-regulating Tyk2-STAT signaling in the human dendritic cell. J Immunol 174: 8163–8172. doi: 10.4049/jimmunol.174.12.8163
[39]  Young DF, Didcock L, Goodbourn S, Randall RE (2000) Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 269: 383–390. doi: 10.1006/viro.2000.0240
[40]  Andrejeva J, Young DF, Goodbourn S, Randall RE (2002) Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respectively: consequences for virus replication in the presence of alpha/beta and gamma interferons. J Virol 76: 2159–2167. doi: 10.1128/jvi.76.5.2159-2167.2002
[41]  Chambers TJ, Grakoui A, Rice CM (1991) Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J Virol 65: 6042–6050.
[42]  Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, et al. (2005) A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol Cell Biol 25: 7120–7136. doi: 10.1128/mcb.25.16.7120-7136.2005
[43]  Leung S, Qureshi SA, Kerr IM, Darnell JE Jr, Stark GR (1995) Role of STAT2 in the alpha interferon signaling pathway. Mol Cell Biol 15: 1312–1317.
[44]  Ashour J, Morrison J, Laurent-Rolle M, Belicha-Villanueva A, Plumlee CR, et al. (2010) Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 8: 410–421. doi: 10.1016/j.chom.2010.10.007
[45]  Emeny JM, Morgan MJ (1979) Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 43: 247–252. doi: 10.1099/0022-1317-43-1-247
[46]  Jessie K, Fong MY, Devi S, Lam SK, Wong KT (2004) Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189: 1411–1418. doi: 10.1086/383043
[47]  Kou Z, Quinn M, Chen H, Rodrigo WW, Rose RC, et al. (2008) Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol 80: 134–146. doi: 10.1002/jmv.21051
[48]  Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, et al. (2000) Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol 74: 4957–4966. doi: 10.1128/jvi.74.11.4957-4966.2000
[49]  Perry ST, Buck MD, Lada SM, Schindler C, Shresta S (2011) STAT2 mediates innate immunity to Dengue virus in the absence of STAT1 via the type I interferon receptor. PLoS Pathog 7: e1001297. doi: 10.1371/journal.ppat.1001297
[50]  Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, et al. (2004) Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78: 2701–2710. doi: 10.1128/jvi.78.6.2701-2710.2004
[51]  Sultana R, Theodoraki MA, Caplan AJ (2012) UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition. Exp Cell Res 318: 53–60. doi: 10.1016/j.yexcr.2011.09.010
[52]  Tomaic V, Pim D, Thomas M, Massimi P, Myers MP, et al. (2011) Regulation of the human papillomavirus type 18 E6/E6AP ubiquitin ligase complex by the HECT domain-containing protein EDD. J Virol 85: 3120–3127. doi: 10.1128/jvi.02004-10
[53]  Nakatani Y, Konishi H, Vassilev A, Kurooka H, Ishiguro K, et al. (2005) p600, a unique protein required for membrane morphogenesis and cell survival. Proc Natl Acad Sci U S A 102: 15093–15098. doi: 10.1073/pnas.0507458102
[54]  DeMasi J, Huh KW, Nakatani Y, Munger K, Howley PM (2005) Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc Natl Acad Sci U S A 102: 11486–11491. doi: 10.1073/pnas.0505322102
[55]  Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, et al. (2005) Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A 102: 11492–11497. doi: 10.1073/pnas.0505337102

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133