全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

DNA Break Site at Fragile Subtelomeres Determines Probability and Mechanism of Antigenic Variation in African Trypanosomes

DOI: 10.1371/journal.ppat.1003260

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antigenic variation in African trypanosomes requires monoallelic transcription and switching of variant surface glycoprotein (VSG) genes. The transcribed VSG, always flanked by ‘70 bp’-repeats and telomeric-repeats, is either replaced through DNA double-strand break (DSB) repair or transcriptionally inactivated. However, little is known about the subtelomeric DSBs that naturally trigger antigenic variation in Trypanosoma brucei, the subsequent DNA damage responses, or how these responses determine the mechanism of VSG switching. We found that DSBs naturally accumulate close to both transcribed and non-transcribed telomeres. We then induced high-efficiency meganuclease-mediated DSBs and monitored DSB-responses and DSB-survivors. By inducing breaks at distinct sites within both transcribed and silent VSG transcription units and assessing local DNA resection, histone modification, G2/M-checkpoint activation, and both RAD51-dependent and independent repair, we reveal how breaks at different sites trigger distinct responses and, in ‘active-site’ survivors, different switching mechanisms. At the active site, we find that promoter-adjacent breaks typically failed to trigger switching, 70 bp-repeat-adjacent breaks almost always triggered switching through 70 bp-repeat recombination (~60% RAD51-dependent), and telomere-repeat-adjacent breaks triggered switching through loss of the VSG expression site (25% of survivors). Expression site loss was associated with G2/M-checkpoint bypass, while 70 bp-repeat-recombination was associated with DNA-resection, γH2A-focus assembly and a G2/M-checkpoint. Thus, the probability and mechanism of antigenic switching are highly dependent upon the location of the break. We conclude that 70 bp-repeat-adjacent and telomere-repeat-adjacent breaks trigger distinct checkpoint responses and VSG switching pathways. Our results show how subtelomere fragility can generate the triggers for the major antigenic variation mechanisms in the African trypanosome.

References

[1]  Horn D, McCulloch R (2010) Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 13: 700–705. doi: 10.1016/j.mib.2010.08.009
[2]  Scherf A, Lopez-Rubio JJ, Riviere L (2008) Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol 62: 445–470. doi: 10.1146/annurev.micro.61.080706.093134
[3]  De Lange T, Borst P (1982) Genomic environment of the expression-linked extra copies of genes for surface antigens of Trypanosoma brucei resembles the end of a chromosome. Nature 299: 451–453. doi: 10.1038/299451a0
[4]  Borst P (2002) Antigenic variation and allelic exclusion. Cell 109: 5–8. doi: 10.1016/s0092-8674(02)00711-0
[5]  Chaves I, Zomerdijk J, Dirks-Mulder A, Dirks RW, Raap AK, et al. (1998) Subnuclear localization of the active variant surface glycoprotein gene expression site in Trypanosoma brucei. Proc Natl Acad Sci U S A 95: 12328–12333. doi: 10.1073/pnas.95.21.12328
[6]  Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414: 759–763. doi: 10.1038/414759a
[7]  Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A, et al. (2008) Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 3: e3527. doi: 10.1371/journal.pone.0003527
[8]  Cross GA (1975) Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71: 393–417. doi: 10.1017/s003118200004717x
[9]  Yang X, Figueiredo LM, Espinal A, Okubo E, Li B (2009) RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell 137: 99–109. doi: 10.1016/j.cell.2009.01.037
[10]  Boothroyd CE, Dreesen O, Leonova T, Ly KI, Figueiredo LM, et al. (2009) A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459: 278–281. doi: 10.1038/nature07982
[11]  Robinson NP, Burman N, Melville SE, Barry JD (1999) Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol Cell Biol 19: 5839–5846.
[12]  Cross M, Taylor MC, Borst P (1998) Frequent loss of the active site during variant surface glycoprotein expression site switching in vitro in Trypanosoma brucei. Mol Cell Biol 18: 198–205.
[13]  Kim HS, Cross GA (2010) TOPO3α influences antigenic variation by monitoring expression-site-associated VSG switching in Trypanosoma brucei. PLoS Pathog 6: e1000992. doi: 10.1371/journal.ppat.1000992
[14]  Kim HS, Cross GA (2011) Identification of Trypanosoma brucei RMI1/BLAP75 homologue and its roles in antigenic variation. PLoS One 6: e25313. doi: 10.1371/journal.pone.0025313
[15]  Rudenko G, Chaves I, Dirks-Mulder A, Borst P (1998) Selection for activation of a new variant surface glycoprotein gene expression site in Trypanosoma brucei can result in deletion of the old one. Mol Biochem Parasitol 95: 97–109. doi: 10.1016/s0166-6851(98)00099-1
[16]  Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, et al. (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309: 416–422. doi: 10.1126/science.1112642
[17]  Marcello L, Barry JD (2007) Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res 17: 1344–1352. doi: 10.1101/gr.6421207
[18]  Liu AY, Van der Ploeg LH, Rijsewijk FA, Borst P (1983) The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. Presence of repeated elements at its border and absence of promoter-associated sequences. J Mol Biol 167: 57–75. doi: 10.1016/s0022-2836(83)80034-5
[19]  McCulloch R, Rudenko G, Borst P (1997) Gene conversions mediating antigenic variation in Trypanosoma brucei can occur in variant surface glycoprotein expression sites lacking 70-base-pair repeat sequences. Mol Cell Biol 17: 833–843.
[20]  Glover L, McCulloch R, Horn D (2008) Sequence homology and microhomology dominate chromosomal double-strand break repair in African trypanosomes. Nucleic Acids Res 36: 2608–2618. doi: 10.1093/nar/gkn104
[21]  Glover L, Jun J, Horn D (2011) Microhomology-mediated deletion and gene conversion in African trypanosomes. Nucleic Acids Res 39: 1372–1380. doi: 10.1093/nar/gkq981
[22]  McCulloch R, Barry JD (1999) A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev 13: 2875–2888. doi: 10.1101/gad.13.21.2875
[23]  Proudfoot C, McCulloch R (2005) Distinct roles for two RAD51-related genes in Trypanosoma brucei antigenic variation. Nucleic Acids Res 33: 6906–6919. doi: 10.1093/nar/gki996
[24]  Hartley CL, McCulloch R (2008) Trypanosoma brucei BRCA2 acts in antigenic variation and has undergone a recent expansion in BRC repeat number that is important during homologous recombination. Mol Microbiol 68: 1237–1251. doi: 10.1111/j.1365-2958.2008.06230.x
[25]  Sheader K, Vaughan S, Minchin J, Hughes K, Gull K, et al. (2005) Variant surface glycoprotein RNA interference triggers a precytokinesis cell cycle arrest in African trypanosomes. Proc Natl Acad Sci U S A 102: 8716–8721. doi: 10.1073/pnas.0501886102
[26]  Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, et al. (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447: 730–734. doi: 10.1038/nature05842
[27]  Horn D, Spence C, Ingram AK (2000) Telomere maintenance and length regulation in Trypanosoma brucei. EMBO J 19: 2332–2339. doi: 10.1093/emboj/19.10.2332
[28]  Glover L, Alsford S, Beattie C, Horn D (2007) Deletion of a trypanosome telomere leads to loss of silencing and progressive loss of terminal DNA in the absence of cell cycle arrest. Nucleic Acids Res 35: 872–880. doi: 10.1093/nar/gkl1100
[29]  Conway C, Proudfoot C, Burton P, Barry JD, McCulloch R (2002) Two pathways of homologous recombination in Trypanosoma brucei. Mol Microbiol 45: 1687–1700. doi: 10.1046/j.1365-2958.2002.03122.x
[30]  Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40: 209–235. doi: 10.1146/annurev.genet.40.051206.105231
[31]  Carneiro T, Khair L, Reis CC, Borges V, Moser BA, et al. (2010) Telomeres avoid end detection by severing the checkpoint signal transduction pathway. Nature 467: 228–232. doi: 10.1038/nature09353
[32]  Siegel TN, Hekstra DR, Cross GA (2008) Analysis of the Trypanosoma brucei cell cycle by quantitative DAPI imaging. Mol Biochem Parasitol 160: 171–174. doi: 10.1016/j.molbiopara.2008.04.004
[33]  Ribeyre C, Shore D (2012) Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 19: 307–313. doi: 10.1038/nsmb.2225
[34]  Glover L, Horn D (2012) Trypanosomal histone γH2A and the DNA damage response. Mol Biochem Parasitol 183: 78–83. doi: 10.1016/j.molbiopara.2012.01.008
[35]  Bouffler SD (1998) Involvement of telomeric sequences in chromosomal aberrations. Mutat Res 404: 199–204. doi: 10.1016/s0027-5107(98)00114-6
[36]  Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, et al. (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94–100. doi: 10.1038/nature04029
[37]  Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J, et al. (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138: 90–103. doi: 10.1016/j.cell.2009.06.021
[38]  Scherf A, Mattei D (1992) Cloning and characterization of chromosome breakpoints of Plasmodium falciparum: breakage and new telomere formation occurs frequently and randomly in subtelomeric genes. Nucleic Acids Res 20: 1491–1496. doi: 10.1093/nar/20.7.1491
[39]  Friedel AM, Pike BL, Gasser SM (2009) ATR/Mec1: coordinating fork stability and repair. Curr Opin Cell Biol 21: 237–244. doi: 10.1016/j.ceb.2009.01.017
[40]  Hovel-Miner GA, Boothroyd CE, Mugnier M, Dreesen O, Cross GA, et al. (2012) Telomere length affects the frequency and mechanism of antigenic variation in Trypanosoma brucei. PLoS Pathog 8: e1002900. doi: 10.1371/journal.ppat.1002900
[41]  Dreesen O, Li B, Cross GA (2007) Telomere structure and function in trypanosomes: a proposal. Nat Rev Microbiol 5: 70–75. doi: 10.1038/nrmicro1577
[42]  Haber JE (2006) Transpositions and translocations induced by site-specific double-strand breaks in budding yeast. DNA Repair (Amst) 5: 998–1009. doi: 10.1016/j.dnarep.2006.05.025
[43]  Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334. doi: 10.1146/annurev.genet.41.110306.130350
[44]  Barry JD, Ginger ML, Burton P, McCulloch R (2003) Why are parasite contingency genes often associated with telomeres? Int J Parasitol 33: 29–45. doi: 10.1016/s0020-7519(02)00247-3
[45]  Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al. (1998) Current Protocols in Molecular Biology. USA: John Wiley and Sons, Inc.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133