全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HIV Restriction by APOBEC3 in Humanized Mice

DOI: 10.1371/journal.ppat.1003242

Full-Text   Cite this paper   Add to My Lib

Abstract:

Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.

References

[1]  Duggal NK, Emerman M (2012) Evolutionary conflicts between viruses and restriction factors shape immunity. Nature reviews Immunology 12: 687–695. doi: 10.1038/nri3295
[2]  Hatziioannou T, Bieniasz PD (2011) Antiretroviral Restriction Factors. Current opinion in virology 1: 526–532. doi: 10.1016/j.coviro.2011.10.007
[3]  Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D, et al. (2005) APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433: 430–433. doi: 10.1038/nature03238
[4]  Sasada A, Takaori-Kondo A, Shirakawa K, Kobayashi M, Abudu A, et al. (2005) APOBEC3G targets human T-cell leukemia virus type 1. Retrovirology 2: 32. doi: 10.1186/1742-4690-2-32
[5]  Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418: 646–650. doi: 10.1038/nature00939
[6]  Tsuge M, Noguchi C, Akiyama R, Matsushita M, Kunihiro K, et al. (2010) G to A hypermutation of TT virus. Virus research 149: 211–216. doi: 10.1016/j.virusres.2010.01.019
[7]  Turelli P, Mangeat B, Jost S, Vianin S, Trono D (2004) Inhibition of hepatitis B virus replication by APOBEC3G. Science 303: 1829. doi: 10.1126/science.1092066
[8]  Vartanian JP, Guetard D, Henry M, Wain-Hobson S (2008) Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320: 230–233. doi: 10.1126/science.1153201
[9]  Zheng YH, Irwin D, Kurosu T, Tokunaga K, Sata T, et al. (2004) Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication. J Virol 78: 6073–6076. doi: 10.1128/jvi.78.11.6073-6076.2004
[10]  Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, et al. (2003) DNA deamination mediates innate immunity to retroviral infection. Cell 113: 803–809. doi: 10.1016/s0092-8674(03)00423-9
[11]  Liddament MT, Brown WL, Schumacher AJ, Harris RS (2004) APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr Biol 14: 1385–1391. doi: 10.1016/j.cub.2004.06.050
[12]  Yu Q, Konig R, Pillai S, Chiles K, Kearney M, et al. (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol 11: 435–442. doi: 10.1038/nsmb758
[13]  Bishop KN, Holmes RK, Sheehy AM, Davidson NO, Cho SJ, et al. (2004) Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Current biology 14: 1392–1396. doi: 10.1016/j.cub.2004.06.057
[14]  Langlois MA, Beale RC, Conticello SG, Neuberger MS (2005) Mutational comparison of the single-domained APOBEC3C and double-domained APOBEC3F/G anti-retroviral cytidine deaminases provides insight into their DNA target site specificities. Nucleic acids research 33: 1913–1923. doi: 10.1093/nar/gki343
[15]  Refsland EW, Hultquist JF, Harris RS (2012) Endogenous Origins of HIV-1 G-to-A Hypermutation and Restriction in the Nonpermissive T Cell Line CEM2n. PLoS pathogens 8: e1002800. doi: 10.1371/journal.ppat.1002800
[16]  Lecossier D, Bouchonnet F, Clavel F, Hance AJ (2003) Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300: 1112. doi: 10.1126/science.1083338
[17]  Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, et al. (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424: 99–103. doi: 10.1038/nature01709
[18]  Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, et al. (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424: 94–98. doi: 10.1038/nature01707
[19]  Sadler HA, Stenglein MD, Harris RS, Mansky LM (2010) APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. Journal of virology 84: 7396–7404. doi: 10.1128/jvi.00056-10
[20]  Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, et al. (2011) Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. The Journal of neuroscience : the official journal of the Society for Neuroscience 31: 3148–3157. doi: 10.1523/jneurosci.5473-10.2011
[21]  Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, et al. (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12: 1316–1322. doi: 10.1038/nm1431
[22]  Denton PW, Garcia JV (2011) Humanized mouse models of HIV infection. AIDS reviews 13: 135–148.
[23]  Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nature reviews Immunology 12: 786–798. doi: 10.1038/nri3311
[24]  Denton PW, Estes JD, Sun Z, Othieno FA, Wei BL, et al. (2008) Antiretroviral pre-exposure prophylaxis prevents vaginal transmission of HIV-1 in humanized BLT mice. PLoS Med 5: e16. doi: 10.1371/journal.pmed.0050016
[25]  Denton PW, Krisko JF, Powell DA, Mathias M, Kwak YT, et al. (2010) Systemic administration of antiretrovirals prior to exposure prevents rectal and intravenous HIV-1 transmission in humanized BLT mice. PloS one 5: e8829. doi: 10.1371/journal.pone.0008829
[26]  Denton PW, Olesen R, Choudhary SK, Archin NM, Wahl A, et al. (2012) Generation of HIV latency in humanized BLT mice. Journal of virology 86: 630–634. doi: 10.1128/jvi.06120-11
[27]  Denton PW, Othieno F, Martinez-Torres F, Zou W, Krisko JF, et al. (2011) Topically Applied 1% Tenofovir in Humanized BLT Mice Using the CAPRISA 004 Experimental Design Demonstrates Partial Protection from Vaginal HIV Infection Validating the BLT Model for the Evaluation of New Microbicide Candidates. Journal of virology 85: 7582–93. doi: 10.1128/jvi.00537-11
[28]  Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, et al. (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204: 705–714. doi: 10.1084/jem.20062411
[29]  Berkowitz RD, Beckerman KP, Schall TJ, McCune JM (1998) CXCR4 and CCR5 expression delineates targets for HIV-1 disruption of T cell differentiation. Journal of immunology 161: 3702–3710.
[30]  Kitchen SG, Zack JA (1999) Distribution of the human immunodeficiency virus coreceptors CXCR4 and CCR5 in fetal lymphoid organs: implications for pathogenesis in utero. AIDS research and human retroviruses 15: 143–148. doi: 10.1089/088922299311565
[31]  Zamarchi R, Allavena P, Borsetti A, Stievano L, Tosello V, et al. (2002) Expression and functional activity of CXCR-4 and CCR-5 chemokine receptors in human thymocytes. Clinical and experimental immunology 127: 321–330. doi: 10.1046/j.1365-2249.2002.01775.x
[32]  Regoes RR, Bonhoeffer S (2005) The HIV coreceptor switch: a population dynamical perspective. Trends in microbiology 13: 269–277. doi: 10.1016/j.tim.2005.04.005
[33]  Ince WL, Zhang L, Jiang Q, Arrildt K, Su L, et al. (2010) Evolution of the HIV-1 env gene in the Rag2?/? gammaC?/? humanized mouse model. Journal of virology 84: 2740–2752. doi: 10.1128/jvi.02180-09
[34]  Sato K, Izumi T, Misawa N, Kobayashi T, Yamashita Y, et al. (2010) Remarkable lethal G-to-A mutations in vif-proficient HIV-1 provirus by individual APOBEC3 proteins in humanized mice. Journal of virology 84: 9546–9556. doi: 10.1128/jvi.00823-10
[35]  Janini M, Rogers M, Birx DR, McCutchan FE (2001) Human immunodeficiency virus type 1 DNA sequences genetically damaged by hypermutation are often abundant in patient peripheral blood mononuclear cells and may be generated during near-simultaneous infection and activation of CD4(+) T cells. J Virol 75: 7973–7986. doi: 10.1128/jvi.75.17.7973-7986.2001
[36]  Kijak GH, Janini LM, Tovanabutra S, Sanders-Buell E, Arroyo MA, et al. (2008) Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. Virology 376: 101–111. doi: 10.1016/j.virol.2008.03.017
[37]  Pace C, Keller J, Nolan D, James I, Gaudieri S, et al. (2006) Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol 80: 9259–9269. doi: 10.1128/jvi.00888-06
[38]  Simon V, Zennou V, Murray D, Huang Y, Ho DD, et al. (2005) Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification. PLoS Pathog 1: e6. doi: 10.1371/journal.ppat.0010006
[39]  Miyagi E, Brown CR, Opi S, Khan M, Goila-Gaur R, et al. (2010) Stably expressed APOBEC3F has negligible antiviral activity. Journal of virology 84: 11067–11075. doi: 10.1128/jvi.01249-10
[40]  Mulder LC, Ooms M, Majdak S, Smedresman J, Linscheid C, et al. (2010) Moderate influence of human APOBEC3F on HIV-1 replication in primary lymphocytes. Journal of virology 84: 9613–9617. doi: 10.1128/jvi.02630-09
[41]  Hache G, Abbink TE, Berkhout B, Harris RS (2009) Optimal translation initiation enables Vif-deficient human immunodeficiency virus type 1 to escape restriction by APOBEC3G. J Virol 83: 5956–5960. doi: 10.1128/jvi.00045-09
[42]  Hache G, Shindo K, Albin JS, Harris RS (2008) Evolution of HIV-1 isolates that use a novel Vif-independent mechanism to resist restriction by human APOBEC3G. Curr Biol 18: 819–824. doi: 10.1016/j.cub.2008.04.073
[43]  Sato K, Misawa N, Fukuhara M, Iwami S, An DS, et al. (2012) Vpu augments the initial burst phase of HIV-1 propagation and downregulates BST2 and CD4 in humanized mice. Journal of virology 86: 5000–5013. doi: 10.1128/jvi.07062-11
[44]  Zou W, Denton PW, Watkins RL, Krisko JF, Nochi T, et al. (2012) Nef functions in BLT mice to enhance HIV-1 replication and deplete CD4+CD8+ thymocytes. Retrovirology 9: 44. doi: 10.1186/1742-4690-9-44
[45]  Koning FA, Newman EN, Kim EY, Kunstman KJ, Wolinsky SM, et al. (2009) Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets. J Virol 83: 9474–9485. doi: 10.1128/jvi.01089-09
[46]  Refsland EW, Stenglein MD, Shindo K, Albin JS, Brown WL, et al. (2010) Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction. Nucleic acids research 38: 4274–4284. doi: 10.1093/nar/gkq174
[47]  Vetter ML, Johnson ME, Antons AK, Unutmaz D, D'Aquila RT (2009) Differences in APOBEC3G expression in CD4+ T helper lymphocyte subtypes modulate HIV-1 infectivity. PLoS Pathog 5: e1000292. doi: 10.1371/journal.ppat.1000292
[48]  Russell RA, Wiegand HL, Moore MD, Schafer A, McClure MO, et al. (2005) Foamy virus Bet proteins function as novel inhibitors of the APOBEC3 family of innate antiretroviral defense factors. Journal of virology 79: 8724–8731. doi: 10.1128/jvi.79.14.8724-8731.2005
[49]  Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D, et al. (2011) 2011 update of the drug resistance mutations in HIV-1. Topics in antiviral medicine 19: 156–164.
[50]  Aldrovandi GM, Zack JA (1996) Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. Journal of virology 70: 1505–1511.
[51]  Cen S, Peng ZG, Li XY, Li ZR, Ma J, et al. (2010) Small molecular compounds inhibit HIV-1 replication through specifically stabilizing APOBEC3G. The Journal of biological chemistry 285: 16546–16552. doi: 10.1074/jbc.m109.085308
[52]  Nathans R, Cao H, Sharova N, Ali A, Sharkey M, et al. (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol 26: 1187–1192. doi: 10.1038/nbt.1496
[53]  Zuo T, Liu D, Lv W, Wang X, Wang J, et al. (2012) Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Replication by Targeting of the Interaction between Vif and ElonginC. Journal of virology 86: 5497–507. doi: 10.1128/jvi.06957-11
[54]  Douek DC, Koup RA, McFarland RD, Sullivan JL, Luzuriaga K (2000) Effect of HIV on thymic function before and after antiretroviral therapy in children. The Journal of infectious diseases 181: 1479–1482. doi: 10.1086/315398
[55]  Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, et al. (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396: 690–695.
[56]  Ye P, Kirschner DE, Kourtis AP (2004) The thymus during HIV disease: role in pathogenesis and in immune recovery. Current HIV research 2: 177–183. doi: 10.2174/1570162043484898
[57]  Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, et al. (1987) Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236: 819–822. doi: 10.1126/science.3646751
[58]  Peden K, Emerman M, Montagnier L (1991) Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. Virology 185: 661–672. doi: 10.1016/0042-6822(91)90537-l
[59]  Karczewski MK, Strebel K (1996) Cytoskeleton association and virion incorporation of the human immunodeficiency virus type 1 Vif protein. Journal of virology 70: 494–507.
[60]  Wei BL, Denton PW, O'Neill E, Luo T, Foster JL, et al. (2005) Inhibition of lysosome and proteasome function enhances human immunodeficiency virus type 1 infection. Journal of virology 79: 5705–5712. doi: 10.1128/jvi.79.9.5705-5712.2005
[61]  Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381: 661–666. doi: 10.1038/381661a0
[62]  Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18: 3587–3596. doi: 10.1093/nar/18.12.3587
[63]  Stopak K, de Noronha C, Yonemoto W, Greene WC (2003) HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol Cell 12: 591–601. doi: 10.1016/s1097-2765(03)00353-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133