全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Digoxin Suppresses HIV-1 Replication by Altering Viral RNA Processing

DOI: 10.1371/journal.ppat.1003241

Full-Text   Cite this paper   Add to My Lib

Abstract:

To develop new approaches to control HIV-1 replication, we examined the capacity of recently described small molecular modulators of RNA splicing for their effects on viral RNA metabolism. Of the drugs tested, digoxin was found to induce a dramatic inhibition of HIV-1 structural protein synthesis, a response due, in part, to reduced accumulation of the corresponding viral mRNAs. In addition, digoxin altered viral RNA splice site use, resulting in loss of the essential viral factor Rev. Digoxin induced changes in activity of the CLK family of SR protein kinases and modification of several SR proteins, including SRp20 and Tra2β, which could account for the effects observed. Consistent with this hypothesis, overexpression of SRp20 elicited changes in HIV-1 RNA processing similar to those observed with digoxin. Importantly, digoxin was also highly active against clinical strains of HIV-1 in vitro, validating this novel approach to treatment of this infection.

References

[1]  Mehellou Y, De Clercq E (2010) Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J Med Chem 53: 521–538. doi: 10.1021/jm900492g
[2]  Flexner C (2007) HIV drug development: the next 25 years. Nat Rev Drug Discov 6: 959–966. doi: 10.1038/nrd2336
[3]  Little SJ, Holte S, Routy JP, Daar ES, Markowitz M, et al. (2002) Antiretroviral-drug resistance among patients recently infected with HIV. N Engl J Med 347: 385–394. doi: 10.1056/nejmoa013552
[4]  Martinez-Picado J, DePasquale MP, Kartsonis N, Hanna GJ, Wong J, et al. (2000) Antiretroviral resistance during successful therapy of HIV type 1 infection. Proc Natl Acad Sci U S A 97: 10948–10953. doi: 10.1073/pnas.97.20.10948
[5]  Struble K, Murray J, Cheng B, Gegeny T, Miller V, et al. (2005) Antiretroviral therapies for treatment-experienced patients: current status and research challenges. Aids 19: 747–756. doi: 10.1097/01.aids.0000168968.34810.ca
[6]  Horn T (2010) One in six new HIV cases involves drug-resistant virus. AID Smedscom
[7]  Horn T (2006) More Drug-Resistant HIV? POZ-Treatment News
[8]  Tian R-r, Liao Q-jiao, Chen X-lin (2008) Current status of targets and assays for anti-HIV drug screening. Virologica Sinica 22: 476–485. doi: 10.1007/s12250-007-0049-5
[9]  Scherer L, Rossi JJ, Weinberg MS (2007) Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Ther 14: 1057–1064. doi: 10.1038/sj.gt.3302977
[10]  Tsygankov AY (2009) Current developments in anti-HIV/AIDS gene therapy. Curr Opin Investig Drugs 10: 137–149.
[11]  Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, et al. (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4: 495–504. doi: 10.1016/j.chom.2008.10.004
[12]  Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, et al. (2008) Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135: 49–60. doi: 10.1016/j.cell.2008.07.032
[13]  Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, et al. (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319: 921–926. doi: 10.1126/science.1152725
[14]  McLaren M, Marsh K, Cochrane A (2008) Modulating HIV-1 RNA processing and utilization. Front Biosci 13: 5693–5707. doi: 10.2741/3110
[15]  Schwartz S, Felber BK, Benko DM, Fenyo E-M, Pavlakis GN (1990) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. Journal of Virology 64: 2519–2529.
[16]  Stoltzfus CM, Madsen JM (2006) Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing. Current HIV Research 4: 43–55. doi: 10.2174/157016206775197655
[17]  Stoltzfus C (2009) Regulation of HIV-1 Alternative RNA Splicing and Its Role in Virus Replication. Adv Virus Res 74: 1–40. doi: 10.1016/s0065-3527(09)74001-1
[18]  Jablonski JA, Caputi M (2009) Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol 83: 981–992. doi: 10.1128/jvi.01801-08
[19]  Tazi J, Bakkour N, Marchand V, Ayadi L, Aboufirassi A, et al. (2010) Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. Febs J 277: 867–876. doi: 10.1111/j.1742-4658.2009.07522.x
[20]  Ropers D, Ayadi L, Gattoni R, Jacquenet S, Damier L, et al. (2004) Differential effects of the SR proteins 9G8, SC35, ASF/SF2 and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. J Biol Chem 279: 29963–29973. doi: 10.1074/jbc.m404452200
[21]  Cochrane AW, McNally MT, Mouland AJ (2006) The retrovirus RNA trafficking granule: from birth to maturity. Retrovirology 3: 18.
[22]  Cullen BR (2003) Nuclear mRNA export: insights from virology. Trends Biochem Sci 28: 419–424. doi: 10.1016/s0968-0004(03)00142-7
[23]  Cullen BR (2002) Using retroviruses to study the nuclear export of mRNA. Results Probl Cell Differ 35: 151–168. doi: 10.1007/978-3-540-44603-3_8
[24]  Pollard V, Malim M (1998) The HIV-1 Rev Protein. Annual Review of Microbiology 52: 491–532. doi: 10.1146/annurev.micro.52.1.491
[25]  Jeang KT, Xiao H, Rich EA (1999) Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 274: 28837–28840. doi: 10.1074/jbc.274.41.28837
[26]  Hope TJ (1999) The ins and outs of HIV Rev. Archives of Biochemistry & Biophysics 365: 186–191. doi: 10.1006/abbi.1999.1207
[27]  Mandal D, Feng Z, Stoltzfus CM (2008) Gag Processing Defect of HIV-1 Integrase E246 and G247 Mutants Is Caused by Activation of an Overlapping 5′ Splice Site. J Virol 82: 1600–1604. doi: 10.1128/jvi.02295-07
[28]  Madsen JM, Stoltzfus CM (2005) An exonic splicing silencer downstream of the 3′ splice site A2 is required for efficient human immunodeficiency virus type 1 replication. J Virol 79: 10478–10486. doi: 10.1128/jvi.79.16.10478-10486.2005
[29]  Zheng YH, Yu HF, Peterlin BM (2003) Human p32 protein relieves a post-transcriptional block to HIV replication in murine cells.[comment]. Nature Cell Biology 5: 611–618. doi: 10.1038/ncb1000
[30]  Powell D, Amaral M, Wu J, Maniatis T, Greene W (1997) HIV Rev-dependent binding of SF2/ASF to the Rev response element: Possible role in Rev-mediated inhibition of HIV RNA splicing. Proceedings of the National Academy of Sciences of the United States of America 94: 973–978. doi: 10.1073/pnas.94.3.973
[31]  Jacquenet S, Decimo D, Muriaux D, Darlix JL (2005) Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production. Retrovirology 2: 33.
[32]  Fukuhara T, Hosoya T, Shimizu S, Sumi K, Oshiro T, et al. (2006) Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc Natl Acad Sci U S A 103: 11329–11333. doi: 10.1073/pnas.0604616103
[33]  Wong R, Balachandran A, Mao AY, Dobson W, Gray-Owen S, et al. (2011) Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy. Retrovirology 8: 47. doi: 10.1186/1742-4690-8-47
[34]  Soret J, Bakkour N, Maire S, Durand S, Zekri L, et al. (2005) Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A 102: 8764–8769. doi: 10.1073/pnas.0409829102
[35]  Bakkour N, Lin YL, Maire S, Ayadi L, Mahuteau-Betzer F, et al. (2007) Small-molecule inhibition of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. PLoS Pathog 3: 1530–1539. doi: 10.1371/journal.ppat.0030159
[36]  Younis I, Berg M, Kaida D, Dittmar K, Wang C, et al. (2010) Rapid-response splicing reporter screens identify differential regulators of constitutive and alternative splicing. Mol Cell Biol 30: 1718–1728. doi: 10.1128/mcb.01301-09
[37]  Stoilov P, Lin CH, Damoiseaux R, Nikolic J, Black DL (2008) A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. Proc Natl Acad Sci U S A 105: 11218–11223. doi: 10.1073/pnas.0801661105
[38]  Hauptman PJ, Kelly RA (1999) Digitalis. Circulation 99: 1265–1270. doi: 10.1161/01.cir.99.9.1265
[39]  Campbell TJ, MacDonald PS (2003) Digoxin in heart failure and cardiac arrhythmias. Med J Aust 179: 98–102.
[40]  Zhou X, Vink M, Klaver B, Verhoef K, Marzio G, et al. (2006) The genetic stability of a conditional live HIV-1 variant can be improved by mutations in the Tet-On regulatory system that restrain evolution. J Biol Chem 281: 17084–17091. doi: 10.1074/jbc.m513400200
[41]  Zhou X, Vink M, Berkhout B, Das AT (2006) Modification of the Tet-On regulatory system prevents the conditional-live HIV-1 variant from losing doxycycline-control. Retrovirology 3: 82.
[42]  Keriel A, Mahuteau-Betzer F, Jacquet C, Plays M, Grierson D, et al. (2009) Protection against retrovirus pathogenesis by SR protein inhibitors. PLoS One 4: e4533. doi: 10.1371/journal.pone.0004533
[43]  Micheva-Viteva S, Pacchia AL, Ron Y, Peltz SW, Dougherty JP (2005) Human immunodeficiency virus type 1 latency model for high-throughput screening. Antimicrob Agents Chemother 49: 5185–5188. doi: 10.1128/aac.49.12.5185-5188.2005
[44]  Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293: C509–536. doi: 10.1152/ajpcell.00098.2007
[45]  Xie J (2008) Control of alternative pre-mRNA splicing by Ca(++) signals. Biochim Biophys Acta 1779: 438–452. doi: 10.1016/j.bbagrm.2008.01.003
[46]  Zacharias DA, Strehler EE (1996) Change in plasma membrane Ca2(+)-ATPase splice-variant expression in response to a rise in intracellular Ca2+. Curr Biol 6: 1642–1652. doi: 10.1016/s0960-9822(02)70788-4
[47]  Stamm S (2002) Signals and their transduction pathways regulating alternative splicing: a new dimension of the human genome. Hum Mol Genet 11: 2409–2416. doi: 10.1093/hmg/11.20.2409
[48]  Nayler O, Stamm S, Ullrich A (1997) Characterization and comparison of four serine- and arginine-rich (SR) protein kinases. Biochem J 326(Pt 3): 693–700.
[49]  Duncan PI, Stojdl DF, Marius RM, Scheit KH, Bell JC (1998) The Clk2 and Clk3 dual-specificity protein kinases regulate the intranuclear distribution of SR proteins and influence pre-mRNA splicing. Exp Cell Res 241: 300–308. doi: 10.1006/excr.1998.4083
[50]  Hartmann AM, Rujescu D, Giannakouros T, Nikolakaki E, Goedert M, et al. (2001) Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol Cell Neurosci 18: 80–90. doi: 10.1006/mcne.2001.1000
[51]  Anderson ES, Lin CH, Xiao X, Stoilov P, Burge CB, et al. (2012) The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B. Rna 18: 1041–1049. doi: 10.1261/rna.032912.112
[52]  Rossi JJ, June CH, Kohn DB (2007) Genetic therapies against HIV. Nat Biotechnol 25: 1444–1454. doi: 10.1038/nbt1367
[53]  Miller WR, Anderson TJ, Evans DB, Krause A, Hampton G, et al. (2003) An integrated view of aromatase and its inhibition. J Steroid Biochem Mol Biol 86: 413–421. doi: 10.1016/s0960-0760(03)00352-2
[54]  Menard J, Patchett AA (2001) Angiotensin-converting enzyme inhibitors. Adv Protein Chem 56: 13–75. doi: 10.1016/s0065-3233(01)56002-7
[55]  Hook VY, Reisine TD (2003) Cysteine proteases are the major beta-secretase in the regulated secretory pathway that provides most of the beta-amyloid in Alzheimer's disease: role of BACE 1 in the constitutive secretory pathway. J Neurosci Res 74: 393–405. doi: 10.1002/jnr.10784
[56]  Folkman J (2006) Antiangiogenesis in cancer therapy–endostatin and its mechanisms of action. Exp Cell Res 312: 594–607. doi: 10.1016/j.yexcr.2005.11.015
[57]  Iacampo S, Cochrane A (1996) Human Immunodeficiency Virus Type 1 Rev Function Requires Continued Synthesis of Its Target mRNA. Journal of Virology 70: 8332–8339.
[58]  Dvela M, Rosen H, Feldmann T, Nesher M, Lichtstein D (2007) Diverse biological responses to different cardiotonic steroids. Pathophysiology 14: 159–166. doi: 10.1016/j.pathophys.2007.09.011
[59]  Prassas I, Karagiannis GS, Batruch I, Dimitromanolakis A, Datti A, et al. (2011) Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon signaling networks. Mol Cancer Ther 10: 2083–2093. doi: 10.1158/1535-7163.mct-11-0421
[60]  Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197–1211. doi: 10.1017/s1355838200000960
[61]  Manley JL, Tacke R (1996) SR Proteins and splicing control. Genes and Development 10: 1569–1579. doi: 10.1101/gad.10.13.1569
[62]  Sanford JR, Ellis J, Caceres JF (2005) Multiple roles of arginine/serine-rich splicing factors in RNA processing. Biochem Soc Trans 33: 443–446. doi: 10.1042/bst0330443
[63]  Zahler AM, Neugebauer KM, Lane WS, Roth MB (1993) Distinct Functions of SR Proteins in Alternative Pre-mRNA Splicing. Science 260: 219–222. doi: 10.1126/science.8385799
[64]  Nayler O, Cap C, Stamm S (1998) Human transformer-2-beta gene (SFRS10): complete nucleotide sequence, chromosomal localization, and generation of a tissue-specific isoform. Genomics 53: 191–202. doi: 10.1006/geno.1998.5471
[65]  Stoilov P, Daoud R, Nayler O, Stamm S (2004) Human tra2-beta1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Human Molecular Genetics 13: 509–524. doi: 10.1093/hmg/ddh051
[66]  Caputi M, Freund M, Kammler S, Asang C, Schaal H (2004) A bidirectional SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression. Journal of Virology 78: 6517–6526. doi: 10.1128/jvi.78.12.6517-6526.2004
[67]  Asang C, Hauber I, Schaal H (2008) Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer. Nucleic Acids Res 36: 1450–1463. doi: 10.1093/nar/gkm1147
[68]  Muraki M, Ohkawara B, Hosoya T, Onogi H, Koizumi J, et al. (2004) Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279: 24246–24254. doi: 10.1074/jbc.m314298200
[69]  Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7: 926–935. doi: 10.1038/nrd2682

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133