[1] | Melton-Celsa A, Mohawk K, Teel L, O'Brien AD (2012) Pathogenesis of shiga-toxin producing Escherichia coli. In: Mantis NJ, editor. Ricin and Shiga Toxins Berlin, Germany: Springer-Verlag. pp. 67–103.
|
[2] | Kaper JB (1998) Enterhemorrhagic Escherichia coli. Curr Opin Microbiol 1: 103–108.
|
[3] | Muniesa M, Hammerl JA, Hertwig S, Appel B, Brussow H (2012) Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 78: 4065–4073. doi: 10.1128/aem.00217-12
|
[4] | Tyler JS, Livny J, Friedman DI (2005) Lambdoid Phages and Shiga Toxin. In: Waldor MK, Friedman DI, Adhya SL, editors. Phages; Their role in Pathogenesis and Biotechnology. Washington, D.C.: ASM Press. pp. 131–164.
|
[5] | O'Brien AD, Tesh VL, Donohue-Rolfe A, Jackson MP, Olsnes S, et al. (1992) Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol 180: 65–94. doi: 10.1007/978-3-642-77238-2_4
|
[6] | Tarr PI, Gordon CA, Chandler WL (2005) Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 1073–1086. doi: 10.1016/s0140-6736(05)71144-2
|
[7] | Eaton KA, Friedman DI, Francis GJ, Tyler JS, Young VB, et al. (2008) Pathogenesis of Renal Disease Due to Enterohemorrhagic Escherichia coli in Germ-Free Mice. Infect Immun 76: 3054–3063. doi: 10.1128/iai.01626-07
|
[8] | Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT (1986) Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med 163: 1391–1404. doi: 10.1084/jem.163.6.1391
|
[9] | Sandvig K, Grimmer S, Lauvrak SU, Torgersen ML, Skretting G, et al. (2002) Pathways followed by ricin and Shiga toxin into cells. Histochem Cell Biol 117: 131–141. doi: 10.1007/s00418-001-0346-2
|
[10] | Reisbig R, Olsnes S, Eiklid K (1981) The cytotoxic activity of Shigella toxin. Evidence for catalytic inactivation of the 60S ribosomal subunit. J Biol Chem 256: 8739–8744.
|
[11] | Campbell A (1994) Comparative molecular biology of lambdoid phages. Ann Rev Microbiol 48: 193–222. doi: 10.1146/annurev.mi.48.100194.001205
|
[12] | Degnan PH, Michalowski CB, Babic AC, Cordes MH, Little JW (2007) Conservation and diversity in the immunity regions of wild phages with the immunity specificity of phage lambda. Mol Microbiol 64: 232–244. doi: 10.1111/j.1365-2958.2007.05650.x
|
[13] | Botstein D (1980) A theory of modular evolution for bacteriophages. Annals of the New York Academy of Sciences 354: 484–490. doi: 10.1111/j.1749-6632.1980.tb27987.x
|
[14] | Neely MN, Friedman DI (1998) Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol 28: 1255–1267. doi: 10.1046/j.1365-2958.1998.00890.x
|
[15] | Roberts JW (1993) RNA and protein elements of E. coli and lambda transcription antitermination complexes. Cell 72: 653–655. doi: 10.1016/0092-8674(93)90394-6
|
[16] | Waldor MK, Friedman DI (2005) Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 8: 459–465. doi: 10.1016/j.mib.2005.06.001
|
[17] | Plunkett G 3rd, Rose DJ, Durfee TJ, Blattner FR (1999) Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J Bacteriol 181: 1767–1778.
|
[18] | Wagner PL, Neely MN, Zhang X, Acheson DW, Waldor MK, et al. (2001) Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183: 2081–2085. doi: 10.1128/jb.183.6.2081-2085.2001
|
[19] | Tyler JS, Mills MJ, Friedman DI (2004) The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J Bacteriol 186: 7670–7679. doi: 10.1128/jb.186.22.7670-7679.2004
|
[20] | Zhang X, McDaniel AD, Wolf LE, Keusch GT, Waldor MK, et al. (2000) Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J Infect Dis 181: 664–670. doi: 10.1086/315239
|
[21] | Wong CS, Jelacic S, Habeeb RL, Watkins SL, Tarr PI (2000) The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med 342: 1930–1936. doi: 10.1056/nejm200006293422601
|
[22] | Friedman DI, Court DL (2001) Bacteriophage lambda: alive and well and still doing its thing. Curr Opin Microbiol 4: 201–207. doi: 10.1016/s1369-5274(00)00189-2
|
[23] | Little JW (1996) The SOS Regulatory System. In: Lin ECC, Lynch AS, editors. Regulation of Gene Expression in Escherichia coli. Austin TX: R.G. Landes. pp. 453–479.
|
[24] | Sutton MD, Smith BT, Godoy VG, Walker GC (2000) The SOS response: recent insights into umuDC-dependent mutagenesis and DNA damage tolerance. Annu Rev Genet 34: 479–497. doi: 10.1146/annurev.genet.34.1.479
|
[25] | Little JW (2005) Lysogeny, prophage induction, and lysogenic conversion. In: Waldor MK, Friedman DI, Adhya SL, editors. Phages: Their role in bacterial pathogenesis and biotechnology. Washington, D.C.: ASM Press. pp. 37–54.
|
[26] | Friedman DI, Court DL (2006) Regulation of lambda gene expression by transcription termination and antitermination. In: Calendar R, editor. The Bacteriophages. Oxford: Oxford Press. pp. 83–103.
|
[27] | Roberts JW, Yarnell W, Bartlett E, Guo J, Marr M, et al. (1998) Antitermination by bacteriophage lambda Q protein. Cold Spring Harb Symp Quant Biol LXIII: 319–325. doi: 10.1101/sqb.1998.63.319
|
[28] | Karch H, Schmidt H, Janetzki-Mittmann C, Scheef J, Kroger M (1999) Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol Gen Genet 262: 600–607. doi: 10.1007/s004380051122
|
[29] | Roberts JW, Devoret R (1983) Lysogenic Induction. In: Hendrix RW, Roberts JW, Stahl FW, Weisberg RA, editors. Lambda II. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. pp. 123–144.
|
[30] | Gimble FS, Sauer RT (1985) Mutations in bacteriophage lambda repressor that prevent RecA-mediated cleavage. J Bacteriol 162: 147–154.
|
[31] | Little JW (2006) Gene regulatory circuitry of phage lambda. In: Calendar R, editor. The Bacteriophages. New York, New York: Oxford University Press. pp. 74–82.
|
[32] | Little JW (1984) Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci USA 81: 1375–1379. doi: 10.1073/pnas.81.5.1375
|
[33] | Fuchs S, Muhldorfer I, Donohue-Rolfe A, Kerenyi M, Emody L, et al. (1999) Influence of RecA on in vivo virulence and Shiga toxin 2 production in Escherichia coli pathogens. Micro Path 27: 13–23. doi: 10.1006/mpat.1999.0279
|
[34] | Clark AJ (1973) Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet 7: 67–86. doi: 10.1146/annurev.ge.07.120173.000435
|
[35] | Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29: 11–22. doi: 10.1016/0092-8674(82)90085-x
|
[36] | Wagner PL, Acheson DW, Waldor MK (2001) Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect Immun 69: 1934–1937. doi: 10.1128/iai.69.3.1934-1937.2001
|
[37] | Slilaty SN, Little JW (1987) Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. Proc Natl Acad Sci USA 84: 3987–3991. doi: 10.1073/pnas.84.12.3987
|
[38] | Lin LL, Little JW (1988) Isolation and characterization of noncleavable (Ind-) mutants of the LexA repressor of Escherichia coli K-12. J Bacteriol 170: 2163–2173.
|
[39] | Iyer VN, Szybalski W (1963) A Molecular Mechanism of Mitomycin Action: Linking of Complementary DNA Strands. Proc Natl Acad Sci U S A 50: 355–362. doi: 10.1073/pnas.50.2.355
|
[40] | Otsuji N, Sekiguchi M, Iijima T, Takagi Y (1959) Induction of phage formation in the lysogenic Escherichia coli K-12 by mitomycin C. Nature 184: 1079–1080. doi: 10.1038/1841079b0
|
[41] | Perna NT, Plunkett Gr, Burland V, Mau B, Glasner JD, et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533. doi: 10.1038/35054089
|
[42] | Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138: 179–207. doi: 10.1016/0022-2836(80)90283-1
|
[43] | Isogai E, Isogai H, Hayashi S, Kubota T, Kimura K, et al. (2000) Effect of antibiotics, levofloxacin and fosfomycin, on a mouse model with Escherichia coli O157 infection. Microbiol Immunol 44: 89–95. doi: 10.1111/j.1348-0421.2000.tb01251.x
|
[44] | Herold S, Siebert J, Huber A, Schmidt H (2005) Global expression of prophage genes in Escherichia coli O157:H7 strain EDL933 in response to norfloxacin. Antimicrob Agents Chemother 49: 931–944. doi: 10.1128/aac.49.3.931-944.2005
|
[45] | Camilli A, Beattie DT, Mekalanos JJ (1994) Use of genetic recombination as a reporter of gene expression. Proc Natl Acad Sci USA 91: 2634–2638. doi: 10.1073/pnas.91.7.2634
|
[46] | Lee SH, Hava DL, Waldor MK, Camilli A (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99: 625–634. doi: 10.1016/s0092-8674(00)81551-2
|
[47] | Livny J, Friedman DI (2004) Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol Microbiol 51: 1691–1704. doi: 10.1111/j.1365-2958.2003.03934.x
|
[48] | Eisen HA, Fuerst CR, Siminovitch L, Thomas R, Lambert L, et al. (1966) Genetics and physiology of defective lysogeny in K12 (λ): studies of early mutants. Virology 30: 224–241. doi: 10.1016/0042-6822(66)90098-5
|
[49] | Grindley ND (1983) Transposition of Tn3 and related transposons. Cell 32: 3–5. doi: 10.1016/0092-8674(83)90490-7
|
[50] | Waldor MK, Friedman DI, Adhya SL (2005) Phages; Their role in bacterial pathogenesis and biotechnology. Washington, D.C.: ASM Press.
|
[51] | Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68: 560–602. doi: 10.1128/mmbr.68.3.560-602.2004
|
[52] | Johnson EA (2005) Bacteriophages encoding botulism and diphtheria toxins. In: Waldor MK, Friedman DI, Adhya SL, editors. Phage; Their Role in Bacterial Pathogenesis and Biotechnology. Washington, D.C.: ASM Press.
|
[53] | Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910–1914. doi: 10.1126/science.272.5270.1910
|
[54] | Matson JS, Withey JH, DiRita VJ (2007) Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 75: 5542–5549. doi: 10.1128/iai.01094-07
|
[55] | Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3: 722–732. doi: 10.1038/nrmicro1235
|
[56] | Robinson CM, Sinclair JF, Smith MJ, O'Brien AD (2006) Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc Natl Acad Sci U S A 103: 9667–9672. doi: 10.1073/pnas.0602359103
|
[57] | Broudy TB, Pancholi V, Fischetti VA (2001) Induction of lysogenic bacteriophage and phage-associated toxin from group A Streptococci during coculture with human pharyngeal cells. Infect Immun 69: 1440–1443. doi: 10.1128/iai.69.3.1440-1443.2001
|
[58] | de Sablet T, Chassard C, Bernalier-Donadille A, Vareille M, Gobert AP, et al. (2009) Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect Immun 77: 783–790. doi: 10.1128/iai.01048-08
|
[59] | Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11: 367–379. doi: 10.1038/nrg2775
|
[60] | Friedman N, Vardi S, Ronen M, Alon U, Stavans J (2005) Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol 3: e238. doi: 10.1371/journal.pbio.0030238
|
[61] | Little JW (1983) The SOS regulatory system: control of its state by the level of RecA protease. J Mol Biol 167: 791–808. doi: 10.1016/s0022-2836(83)80111-9
|
[62] | Sawitzke JA, Costantino N, Li XT, Thomason LC, Bubunenko M, et al. (2011) Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol 407: 45–59. doi: 10.1016/j.jmb.2011.01.030
|
[63] | Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36: 361–388. doi: 10.1146/annurev.genet.36.061102.093104
|
[64] | Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, et al. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97: 5978–5983. doi: 10.1073/pnas.100127597
|
[65] | Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6645. doi: 10.1073/pnas.120163297
|
[66] | Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245: 160–164. doi: 10.1126/science.2665076
|
[67] | Costantino N, Court DL (2003) Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A 100: 15748–15753. doi: 10.1073/pnas.2434959100
|
[68] | Murphy KC, Campellone KG (2003) Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4: 11.
|
[69] | Wagner PL, Livny J, Neely MN, Acheson DW, Friedman DI, et al. (2002) Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol 44: 957–970. doi: 10.1046/j.1365-2958.2002.02950.x
|
[70] | Livny J, LaRock CN, Friedman DI (2009) Identification and isolation of lysogens with induced prophage. In: Cloakie MRJ, Kropinski AM, editors. Bacteriophages, Methods and Protocls. New York, NY: Humana Press. pp. 253–265.
|
[71] | Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci USA 98: 6742–6746. doi: 10.1073/pnas.121164898
|
[72] | Gottesman ME, Yarmolinsky MB (1968) Integration-negative Mutants of Bacteriophage Lambda. J Mol Biol 31: 487–505. doi: 10.1016/0022-2836(68)90423-3
|
[73] | Datta S, Costantino N, Court DL (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379: 109–115. doi: 10.1016/j.gene.2006.04.018
|
[74] | O'Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, et al. (1984) Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226: 694–696. doi: 10.1126/science.6387911
|
[75] | Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, et al. (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308: 681–685. doi: 10.1056/nejm198303243081203
|
[76] | Livny J (2003) Characterizing the role of the lambdoid prophage H-19B in the production and release of Shiga toxin. Ann Arbor, Michigan: Ph.D. Thesis, University of Michigan.
|