Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.
References
[1]
Helenius A (2007) Virus Entry and Uncoating. In: Knipe DM, Howley PM, editors. Fields Virology, 5 edition. Philadelphia, USA: Lippincott Williams & Wilkins. pp. 99–118.
[2]
Kaplan G, Totsuka A, Thompson P, Akatsuka T, Moritsugu Y, et al. (1996) Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J 15: 4282–4296.
[3]
Silberstein E, Dveksler G, Kaplan GG (2001) Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1. J Virol 75: 717–725. doi: 10.1128/jvi.75.2.717-725.2001
[4]
Feigelstock D, Thompson P, Mattoo P, Zhang Y, Kaplan GG (1998) The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J Virol 72: 6621–6628.
[5]
Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, et al. (2011) T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci U S A 108: 8426–8431. doi: 10.1073/pnas.1019030108
[6]
Schornberg KL, Shoemaker CJ, Dube D, Abshire MY, Delos SE, et al. (2009) Alpha5beta1-integrin controls ebolavirus entry by regulating endosomal cathepsins. Proc Natl Acad Sci U S A 106: 8003–8008. doi: 10.1073/pnas.0807578106
[7]
Takada A, Watanabe S, Ito H, Okazaki K, Kida H, et al. (2000) Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 278: 20–26. doi: 10.1006/viro.2000.0601
[8]
Simmons G, Rennekamp AJ, Chai N, Vandenberghe LH, Riley JL, et al. (2003) Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol 77: 13433–13438. doi: 10.1128/jvi.77.24.13433-13438.2003
[9]
Sinn PL, Hickey MA, Staber PD, Dylla DE, Jeffers SA, et al. (2003) Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 77: 5902–5910. doi: 10.1128/jvi.77.10.5902-5910.2003
[10]
Chan SY, Empig CJ, Welte FJ, Speck RF, Schmaljohn A, et al. (2001) Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 106: 117–126. doi: 10.1016/s0092-8674(01)00418-4
[11]
Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K, et al. (2006) Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J Virol 80: 10109–10116. doi: 10.1128/jvi.01157-06
[12]
Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, et al. (2003) DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305: 115–123. doi: 10.1006/viro.2002.1730
[13]
Takada A, Fujioka K, Tsuiji M, Morikawa A, Higashi N, et al. (2004) Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol 78: 2943–2947. doi: 10.1128/jvi.78.6.2943-2947.2004
[14]
Gramberg T, Hofmann H, Moller P, Lalor PF, Marzi A, et al. (2005) LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 340: 224–236. doi: 10.1016/j.virol.2005.06.026
[15]
Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, et al. (2011) Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477: 340–343. doi: 10.1038/nature10348
[16]
Cote M, Misasi J, Ren T, Bruchez A, Lee K, et al. (2011) Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477: 344–348. doi: 10.1038/nature10380
[17]
Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, et al. (2012) Ebola virus entry requires the host-programmed recognition of an intracellular receptor. EMBO J 31: 1947–1960. doi: 10.1038/emboj.2012.53
[18]
Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235: 172–189.
[19]
Santiago C, Ballesteros A, Martinez-Munoz L, Mellado M, Kaplan GG, et al. (2007) Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity 27: 941–951. doi: 10.1016/j.immuni.2007.11.008
[20]
Kuchroo VK, Umetsu DT, DeKruyff RH, Freeman GJ (2003) The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol 3: 454–462. doi: 10.1038/nri1111
[21]
Kobayashi N, Karisola P, Pena-Cruz V, Dorfman DM, Jinushi M, et al. (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27: 927–940. doi: 10.1016/j.immuni.2007.11.011
[22]
DeKruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, et al. (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184: 1918–1930. doi: 10.4049/jimmunol.0903059
[23]
Schlegel RA, Williamson P (2001) Phosphatidylserine, a death knell. Cell Death Differ 8: 551–563. doi: 10.1038/sj.cdd.4400817
[24]
Frey B, Gaipl US (2011) The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol 33: 497–516. doi: 10.1007/s00281-010-0228-6
[25]
Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35: 445–455. doi: 10.1016/j.immuni.2011.09.004
[26]
Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, et al. (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450: 435–439. doi: 10.1038/nature06307
[27]
Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, et al. (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113: 3821–3830. doi: 10.1182/blood-2008-10-185884
[28]
Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, et al. (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273: 4135–4142. doi: 10.1074/jbc.273.7.4135
[29]
Umetsu SE, Lee WL, McIntire JJ, Downey L, Sanjanwala B, et al. (2005) TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol 6: 447–454. doi: 10.1038/ni1186
[30]
Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, et al. (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6: 1245–1252. doi: 10.1038/ni1271
[31]
Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, et al. (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415: 536–541. doi: 10.1038/415536a
[32]
Mercer J, Helenius A (2008) Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320: 531–535. doi: 10.1126/science.1155164
[33]
Soares MM, King SW, Thorpe PE (2008) Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat Med 14: 1357–1362. doi: 10.1038/nm.1885
[34]
Gautier I, Coppey J, Durieux C (2003) Early apoptosis-related changes triggered by HSV-1 in individual neuronlike cells. Exp Cell Res 289: 174–183. doi: 10.1016/s0014-4827(03)00258-1
[35]
Morizono K, Xie Y, Olafsen T, Lee B, Dasgupta A, et al. (2011) The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry. Cell Host Microbe 9: 286–298. doi: 10.1016/j.chom.2011.03.012
Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, et al. (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24: 1634–1643. doi: 10.1038/sj.emboj.7600640
[38]
Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, et al. (2006) Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem 281: 15951–15958. doi: 10.1074/jbc.m601796200
[39]
Abraham J, Kwong JA, Albarino CG, Lu JG, Radoshitzky SR, et al. (2009) Host-species transferrin receptor 1 orthologs are cellular receptors for nonpathogenic new world clade B arenaviruses. PLoS Pathog 5: e1000358. doi: 10.1371/journal.ppat.1000358
[40]
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, et al. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454. doi: 10.1038/nature02145
[41]
McKay T, Patel M, Pickles RJ, Johnson LG, Olsen JC (2006) Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther 13: 715–724. doi: 10.1038/sj.gt.3302715
[42]
Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, et al. (2007) Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature 446: 92–96. doi: 10.1038/nature05539
[43]
Pierson TC, Sanchez MD, Puffer BA, Ahmed AA, Geiss BJ, et al. (2006) A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology 346: 53–65. doi: 10.1016/j.virol.2005.10.030
[44]
Diamond MS, Edgil D, Roberts TG, Lu B, Harris E (2000) Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74: 7814–7823. doi: 10.1128/jvi.74.17.7814-7823.2000
[45]
Huang IC, Li W, Sui J, Marasco W, Choe H, et al. (2008) Influenza A virus neuraminidase limits viral superinfection. J Virol 82: 4834–4843. doi: 10.1128/jvi.00079-08
[46]
Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, et al. (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197: 823–829. doi: 10.1084/jem.20021840
[47]
Martinez O, Valmas C, Basler CF (2007) Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology 364: 342–354. doi: 10.1016/j.virol.2007.03.020
[48]
Sherer NM, Lehmann MJ, Jimenez-Soto LF, Ingmundson A, Horner SM, et al. (2003) Visualization of retroviral replication in living cells reveals budding into multivesicular bodies. Traffic 4: 785–801. doi: 10.1034/j.1600-0854.2003.00135.x
[49]
Tscherne DM, Manicassamy B, Garcia-Sastre A (2010) An enzymatic virus-like particle assay for sensitive detection of virus entry. J Virol Methods 163: 336–343. doi: 10.1016/j.jviromet.2009.10.020
[50]
Flanagan ML, Oldenburg J, Reignier T, Holt N, Hamilton GA, et al. (2008) New world clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J Virol 82: 938–948. doi: 10.1128/jvi.01397-07
[51]
Helguera G, Jemielity S, Abraham J, Cordo SM, Martinez MG, et al. (2012) An antibody recognizing the apical domain of human transferrin receptor 1 efficiently inhibits the entry of all new world hemorrhagic Fever arenaviruses. J Virol 86: 4024–4028. doi: 10.1128/jvi.06397-11
[52]
Emoto K, Toyama-Sorimachi N, Karasuyama H, Inoue K, Umeda M (1997) Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res 232: 430–434. doi: 10.1006/excr.1997.3521
[53]
Licata JM, Johnson RF, Han Z, Harty RN (2004) Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol 78: 7344–7351. doi: 10.1128/jvi.78.14.7344-7351.2004
[54]
Kallstrom G, Warfield KL, Swenson DL, Mort S, Panchal RG, et al. (2005) Analysis of Ebola virus and VLP release using an immunocapture assay. J Virol Methods 127: 1–9. doi: 10.1016/j.jviromet.2005.02.015
[55]
Kyle JL, Beatty PR, Harris E (2007) Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 195: 1808–1817. doi: 10.1086/518007
[56]
Geisbert TW, Hensley LE, Larsen T, Young HA, Reed DS, et al. (2003) Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am J Pathol 163: 2347–2370. doi: 10.1016/s0002-9440(10)63591-2
[57]
van der Schaar HM, Rust MJ, Waarts BL, van der Ende-Metselaar H, Kuhn RJ, et al. (2007) Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol 81: 12019–12028. doi: 10.1128/jvi.00300-07
[58]
Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, et al. (2012) The TIM and TAM Families of Phosphatidylserine Receptors Mediate Dengue Virus Entry. Cell Host Microbe 12: 544–557. doi: 10.1016/j.chom.2012.08.009
[59]
Cao W, Henry MD, Borrow P, Yamada H, Elder JH, et al. (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282: 2079–2081. doi: 10.1126/science.282.5396.2079
[60]
Bellosta P, Costa M, Lin DA, Basilico C (1995) The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding. Mol Cell Biol 15: 614–625.
[61]
Goruppi S, Ruaro E, Varnum B, Schneider C (1997) Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts. Mol Cell Biol 17: 4442–4453.
[62]
Smit JM, Bittman R, Wilschut J (1999) Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol 73: 8476–8484.
[63]
White J, Helenius A (1980) pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A 77: 3273–3277. doi: 10.1073/pnas.77.6.3273
[64]
Stegmann T, Hoekstra D, Scherphof G, Wilschut J (1985) Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry 24: 3107–3113. doi: 10.1021/bi00334a006
[65]
Hensley LE, Alves DA, Geisbert JB, Fritz EA, Reed C, et al. (2011) Pathogenesis of Marburg hemorrhagic fever in cynomolgus macaques. J Infect Dis 204 Suppl 3: S1021–1031. doi: 10.1093/infdis/jir339
[66]
van den Eijnde SM, Boshart L, Baehrecke EH, De Zeeuw CI, Reutelingsperger CP, et al. (1998) Cell surface exposure of phosphatidylserine during apoptosis is phylogenetically conserved. Apoptosis 3: 9–16. doi: 10.1023/a:1009650917818
[67]
Fast PG (1966) A comparative study of the phospholipids and fatty acids of some insects. Lipids 1: 209–215. doi: 10.1007/bf02531874
[68]
Butters TD, Hughes RC (1981) Phospholipids and glycolipids in subcellular fractions of mosquito Aedes aegypti cells. In Vitro 17: 831–838. doi: 10.1007/bf02618451