Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants and thereby lead to improved therapy. Our findings suggest mechanisms for occurrence of recombinants observed in patients.
References
[1]
Simon-Loriere E, Holmes EC (2011) Why do RNA viruses recombine? Nature reviews Microbiology 9: 617–626. doi: 10.1038/nrmicro2614
[2]
Malim MH, Emerman M (2001) HIV-1 sequence variation: drift, shift, and attenuation. Cell 104: 469–472. doi: 10.1016/s0092-8674(01)00234-3
[3]
Nora T, Charpentier C, Tenaillon O, Hoede C, Clavel F, et al. (2007) Contribution of recombination to the evolution of human immunodeficiency viruses expressing resistance to antiretroviral treatment. Journal of virology 81: 7620–7628. doi: 10.1128/jvi.00083-07
[4]
Khatchikian D, Orlich M, Rott R (1989) Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340: 156–157. doi: 10.1038/340156a0
[5]
Hahn CS, Lustig S, Strauss EG, Strauss JH (1988) Western equine encephalitis virus is a recombinant virus. Proceedings of the National Academy of Sciences of the United States of America 85: 5997–6001. doi: 10.1073/pnas.85.16.5997
[6]
Kew O, Morris-Glasgow V, Landaverde M, Burns C, Shaw J, et al. (2002) Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science 296: 356–359. doi: 10.1126/science.1068284
[7]
Becher P, Orlich M, Thiel HJ (2001) RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. Journal of virology 75: 6256–6264. doi: 10.1128/jvi.75.14.6256-6264.2001
[8]
Simmonds P (2006) Recombination and selection in the evolution of picornaviruses and other Mammalian positive-stranded RNA viruses. Journal of virology 80: 11124–11140. doi: 10.1128/jvi.01076-06
[9]
Gottwein JM, Bukh J (2008) Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Advances in virus research 71: 51–133. doi: 10.1016/s0065-3527(08)00002-x
[10]
Morel V, Fournier C, Francois C, Brochot E, Helle F, et al. (2011) Genetic recombination of the hepatitis C virus: clinical implications. Journal of viral hepatitis 18: 77–83. doi: 10.1111/j.1365-2893.2010.01367.x
[11]
Gonzalez-Candelas F, Lopez-Labrador FX, Bracho MA (2011) Recombination in hepatitis C virus. Viruses 3: 2006–2024. doi: 10.3390/v3102006
[12]
Simmonds P, Bukh J, Combet C, Deleage G, Enomoto N, et al. (2005) Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology 42: 962–973. doi: 10.1002/hep.20819
[13]
Kalinina O, Norder H, Mukomolov S, Magnius LO (2002) A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg. Journal of virology 76: 4034–4043. doi: 10.1128/jvi.76.8.4034-4043.2002
[14]
Pacini L, Graziani R, Bartholomew L, De Francesco R, Paonessa G (2009) Naturally occurring hepatitis C virus subgenomic deletion mutants replicate efficiently in Huh-7 cells and are trans-packaged in vitro to generate infectious defective particles. Journal of virology 83: 9079–9093. doi: 10.1128/jvi.00308-09
[15]
Yagi S, Mori K, Tanaka E, Matsumoto A, Sunaga F, et al. (2005) Identification of novel HCV subgenome replicating persistently in chronic active hepatitis C patients. Journal of medical virology 77: 399–413. doi: 10.1002/jmv.20469
[16]
Palmer BA, Moreau I, Levis J, Harty C, Crosbie O, et al. (2012) Insertion and recombination events at hypervariable region 1 over 9.6 years of hepatitis C virus chronic infection. The Journal of general virology 93: 2614–2624. doi: 10.1099/vir.0.045344-0
[17]
Manns MP, Wedemeyer H, Cornberg M (2006) Treating viral hepatitis C: efficacy, side effects, and complications. Gut 55: 1350–1359. doi: 10.1136/gut.2005.076646
[18]
Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM (2012) Antiviral strategies in hepatitis C virus infection. Journal of hepatology 56 Suppl 1: S88–100. doi: 10.1016/s0168-8278(12)60010-5
[19]
Lai MM (1992) RNA recombination in animal and plant viruses. Microbiological reviews 56: 61–79.
[20]
Worobey M, Holmes EC (1999) Evolutionary aspects of recombination in RNA viruses. The Journal of general virology 80(Pt 10): 2535–2543.
[21]
Kirkegaard K, Baltimore D (1986) The mechanism of RNA recombination in poliovirus. Cell 47: 433–443. doi: 10.1016/0092-8674(86)90600-8
[22]
Gmyl AP, Belousov EV, Maslova SV, Khitrina EV, Chetverin AB, et al. (1999) Nonreplicative RNA recombination in poliovirus. Journal of virology 73: 8958–8965.
[23]
Gallei A, Pankraz A, Thiel HJ, Becher P (2004) RNA recombination in vivo in the absence of viral replication. Journal of virology 78: 6271–6281. doi: 10.1128/jvi.78.12.6271-6281.2004
[24]
Gao F, Nainan OV, Khudyakov Y, Li J, Hong Y, et al. (2007) Recombinant hepatitis C virus in experimentally infected chimpanzees. The Journal of general virology 88: 143–147. doi: 10.1099/vir.0.82263-0
[25]
Reiter J, Perez-Vilaro G, Scheller N, Mina LB, Diez J, et al. (2011) Hepatitis C virus RNA recombination in cell culture. Journal of hepatology 55: 777–783. doi: 10.1016/j.jhep.2010.12.038
[26]
Gottwein JM, Scheel TK, Callendret B, Li YP, Eccleston HB, et al. (2010) Novel infectious cDNA clones of hepatitis C virus genotype 3a (strain S52) and 4a (strain ED43): genetic analyses and in vivo pathogenesis studies. Journal of virology 84: 5277–5293. doi: 10.1128/jvi.02667-09
[27]
Li YP, Gottwein JM, Scheel TK, Jensen TB, Bukh J (2011) MicroRNA-122 antagonism against hepatitis C virus genotypes 1–6 and reduced efficacy by host RNA insertion or mutations in the HCV 5′ UTR. Proceedings of the National Academy of Sciences of the United States of America 108: 4991–4996. doi: 10.1073/pnas.1016606108
[28]
Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309: 623–626. doi: 10.1126/science.1114016
[29]
Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature medicine 11: 791–796. doi: 10.1038/nm1268
[30]
Gottwein JM, Jensen TB, Mathiesen CK, Meuleman P, Serre SB, et al. (2011) Development and Application of Hepatitis C Reporter Viruses with Genotype 1 to 7 Core-Nonstructural Protein 2 (NS2) Expressing Fluorescent Proteins or Luciferase in Modified JFH1 NS5A. Journal of virology 85: 8913–8928. doi: 10.1128/jvi.00049-11
[31]
Murayama A, Weng L, Date T, Akazawa D, Tian X, et al. (2010) RNA polymerase activity and specific RNA structure are required for efficient HCV replication in cultured cells. PLoS pathogens 6: e1000885. doi: 10.1371/journal.ppat.1000885
[32]
Gottwein JM, Scheel TK, Jensen TB, Lademann JB, Prentoe JC, et al. (2009) Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49: 364–377. doi: 10.1002/hep.22673
[33]
Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, et al. (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proceedings of the National Academy of Sciences of the United States of America 103: 7408–7413. doi: 10.1073/pnas.0504877103
[34]
Scheel TK, Gottwein JM, Carlsen TH, Li YP, Jensen TB, et al. (2011) Efficient culture adaptation of hepatitis C virus recombinants with genotype-specific core-NS2 by using previously identified mutations. Journal of virology 85: 2891–2906. doi: 10.1128/jvi.01605-10
[35]
Scheel TK, Gottwein JM, Jensen TB, Prentoe JC, Hoegh AM, et al. (2008) Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization. Proceedings of the National Academy of Sciences of the United States of America 105: 997–1002. doi: 10.1073/pnas.0711044105
[36]
Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, et al. (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nature structural biology 6: 937–943.
[37]
Austermann-Busch S, Becher P (2012) RNA Structural Elements Determine Frequency and Sites of Nonhomologous Recombination in an Animal Plus-Strand RNA Virus. Journal of virology 86: 7393–402. doi: 10.1128/jvi.00864-12
[38]
Kalinina O, Norder H, Magnius LO (2004) Full-length open reading frame of a recombinant hepatitis C virus strain from St Petersburg: proposed mechanism for its formation. The Journal of general virology 85: 1853–1857. doi: 10.1099/vir.0.79984-0
[39]
Gallei A, Orlich M, Thiel HJ, Becher P (2005) Noncytopathogenic pestivirus strains generated by nonhomologous RNA recombination: alterations in the NS4A/NS4B coding region. Journal of virology 79: 14261–14270. doi: 10.1128/jvi.79.22.14261-14270.2005
[40]
Meyers G, Rumenapf T, Thiel HJ (1989) Ubiquitin in a togavirus. Nature 341: 491. doi: 10.1038/341491a0
[41]
Monroe SS, Schlesinger S (1983) RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5′ ends. Proceedings of the National Academy of Sciences of the United States of America 80: 3279–3283. doi: 10.1073/pnas.80.11.3279
[42]
Munishkin AV, Voronin LA, Chetverin AB (1988) An in vivo recombinant RNA capable of autocatalytic synthesis by Q beta replicase. Nature 333: 473–475. doi: 10.1038/333473a0
[43]
Becher P, Tautz N (2011) RNA recombination in pestiviruses: cellular RNA sequences in viral genomes highlight the role of host factors for viral persistence and lethal disease. RNA biology 8: 216–224. doi: 10.4161/rna.8.2.14514
[44]
Geuking MB, Weber J, Dewannieux M, Gorelik E, Heidmann T, et al. (2009) Recombination of retrotransposon and exogenous RNA virus results in nonretroviral cDNA integration. Science 323: 393–396. doi: 10.1126/science.1167375
[45]
Schaller T, Appel N, Koutsoudakis G, Kallis S, Lohmann V, et al. (2007) Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. Journal of virology 81: 4591–4603. doi: 10.1128/jvi.02144-06
[46]
Tscherne DM, Evans MJ, von Hahn T, Jones CT, Stamataki Z, et al. (2007) Superinfection exclusion in cells infected with hepatitis C virus. Journal of virology 81: 3693–3703. doi: 10.1128/jvi.01748-06
[47]
Yanagi M, Purcell RH, Emerson SU, Bukh J (1999) Hepatitis C virus: an infectious molecular clone of a second major genotype (2a) and lack of viability of intertypic 1a and 2a chimeras. Virology 262: 250–263. doi: 10.1006/viro.1999.9889
[48]
Yanagi M, Purcell RH, Emerson SU, Bukh J (1997) Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proceedings of the National Academy of Sciences of the United States of America 94: 8738–8743. doi: 10.1073/pnas.94.16.8738
[49]
Sakai A, Takikawa S, Thimme R, Meunier JC, Spangenberg HC, et al. (2007) In vivo study of the HC-TN strain of hepatitis C virus recovered from a patient with fulminant hepatitis: RNA transcripts of a molecular clone (pHC-TN) are infectious in chimpanzees but not in Huh7.5 cells. Journal of virology 81: 7208–7219. doi: 10.1128/jvi.01774-06
[50]
Yanagi M, St Claire M, Shapiro M, Emerson SU, Purcell RH, et al. (1998) Transcripts of a chimeric cDNA clone of hepatitis C virus genotype 1b are infectious in vivo. Virology 244: 161–172. doi: 10.1006/viro.1998.9092
Scheel TK, Gottwein JM, Mikkelsen LS, Jensen TB, Bukh J (2011) Recombinant HCV variants with NS5A from genotypes 1–7 have different sensitivities to an NS5A inhibitor but not interferon-alpha. Gastroenterology 140: 1032–1042. doi: 10.1053/j.gastro.2010.11.036