全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

HSV-2 Specifically Down Regulates HLA-C Expression to Render HSV-2-Infected DCs Susceptible to NK Cell Killing

DOI: 10.1371/journal.ppat.1003226

Full-Text   Cite this paper   Add to My Lib

Abstract:

Both NK cells and CTLs kill virus-infected and tumor cells. However, the ways by which these killer cells recognize the infected or the tumorigenic cells are different, in fact almost opposite. CTLs are activated through the interaction of the TCR with MHC class I proteins. In contrast, NK cells are inhibited by MHC class I molecules. The inhibitory NK receptors recognize mainly MHC class I proteins and in this regard practically all of the HLA-C proteins are recognized by inhibitory NK cell receptors, while only certain HLA-A and HLA-B proteins interact with these receptors. Sophisticated viruses developed mechanisms to avoid the attack of both NK cells and CTLs through, for example, down regulation of HLA-A and HLA-B molecules to avoid CTL recognition, leaving HLA-C proteins on the cell surface to inhibit NK cell response. Here we provide the first example of a virus that through specific down regulation of HLA-C, harness the NK cells for its own benefit. We initially demonstrated that none of the tested HSV-2 derived microRNAs affect NK cell activity. Then we show that surprisingly upon HSV-2 infection, HLA-C proteins are specifically down regulated, rendering the infected cells susceptible to NK cell attack. We identified a motif in the tail of HLA-C that is responsible for the HSV-2-meduiated HLA-C down regulation and we show that the HLA-C down regulation is mediated by the viral protein ICP47. Finally we show that HLA-C proteins are down regulated from the surface of HSV-2 infected dendritic cells (DCs) and that this leads to the killing of DC by NK cells. Thus, we propose that HSV-2 had developed this unique and surprising NK cell-mediated killing strategy of infected DC to prevent the activation of the adaptive immunity.

References

[1]  Hanna J, Mandelboim O (2007) When killers become helpers. Trends Immunol 28: 201–206. doi: 10.1016/j.it.2007.03.005
[2]  Wood SM, Ljunggren HG, Bryceson YT (2011) Insights into NK cell biology from human genetics and disease associations. Cell Mol Life Sci 68: 3479–3493. doi: 10.1007/s00018-011-0799-y
[3]  Gur C, Enk J, Kassem SA, Suissa Y, Magenheim J, et al. (2011) Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. J Immunol 187: 3096–3103. doi: 10.4049/jimmunol.1101269
[4]  Gur C, Doron S, Kfir-Erenfeld S, Horwitz E, Abu-Tair L, et al. (2012) NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 61: 885–893. doi: 10.1136/gutjnl-2011-301400
[5]  Elboim M, Gazit R, Gur C, Ghadially H, Betser-Cohen G, et al. (2010) Tumor immunoediting by NKp46. J Immunol 184: 5637–5644. doi: 10.4049/jimmunol.0901644
[6]  Seidel E, Glasner A, Mandelboim O (2012) Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci doi: 10.1007/s00018-012-1001-x
[7]  Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6: 520–531. doi: 10.1038/nri1863
[8]  Thielens A, Vivier E, Romagne F (2012) NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol 24: 239–245. doi: 10.1016/j.coi.2012.01.001
[9]  Pietra G, Romagnani C, Moretta L, Mingari MC (2009) HLA-E and HLA-E-bound peptides: recognition by subsets of NK and T cells. Curr Pharm Des 15: 3336–3344. doi: 10.2174/138161209789105207
[10]  Mandelboim O, Reyburn HT, Vales-Gomez M, Pazmany L, Colonna M, et al. (1996) Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J Exp Med 184: 913–922. doi: 10.1084/jem.184.3.913
[11]  Campbell KS, Purdy AK (2011) Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 132: 315–325. doi: 10.1111/j.1365-2567.2010.03398.x
[12]  Weidanz JA, Hawkins O, Verma B, Hildebrand WH (2011) TCR-like biomolecules target peptide/MHC Class I complexes on the surface of infected and cancerous cells. Int Rev Immunol 30: 328–340. doi: 10.3109/08830185.2011.604880
[13]  Lilley BN, Ploegh HL (2005) Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol Rev 207: 126–144. doi: 10.1111/j.0105-2896.2005.00318.x
[14]  Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, et al. (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10: 661–671. doi: 10.1016/s1074-7613(00)80065-5
[15]  Loenen WA, Bruggeman CA, Wiertz EJ (2001) Immune evasion by human cytomegalovirus: lessons in immunology and cell biology. Semin Immunol 13: 41–49. doi: 10.1006/smim.2001.0294
[16]  Dolan A, Jamieson FE, Cunningham C, Barnett BC, McGeoch DJ (1998) The genome sequence of herpes simplex virus type 2. J Virol 72: 2010–2021.
[17]  Shukla SY, Singh YK, Shukla D (2009) Role of nectin-1, HVEM, and PILR-alpha in HSV-2 entry into human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 50: 2878–2887. doi: 10.1167/iovs.08-2981
[18]  Ashkar AA, Rosenthal KL (2003) Interleukin-15 and natural killer and NKT cells play a critical role in innate protection against genital herpes simplex virus type 2 infection. J Virol 77: 10168–10171. doi: 10.1128/jvi.77.18.10168-10171.2003
[19]  Milligan GN, Bernstein DI (1997) Interferon-gamma enhances resolution of herpes simplex virus type 2 infection of the murine genital tract. Virology 229: 259–268. doi: 10.1006/viro.1997.8441
[20]  Mohamed FA, Roberts M, Seton L, Ford JL, Levina M, et al. (2012) Production of extended release mini-tablets using directly compressible grades of HPMC. Drug Dev Ind Pharm [Epub ahead of print]. doi: 10.3109/03639045.2012.730524
[21]  Tomazin R, van Schoot NE, Goldsmith K, Jugovic P, Sempe P, et al. (1998) Herpes simplex virus type 2 ICP47 inhibits human TAP but not mouse TAP. J Virol 72: 2560–2563.
[22]  Jugovic P, Hill AM, Tomazin R, Ploegh H, Johnson DC (1998) Inhibition of major histocompatibility complex class I antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47. J Virol 72: 5076–5084.
[23]  Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, et al. (2007) Host immune system gene targeting by a viral miRNA. Science 317: 376–381. doi: 10.1126/science.1140956
[24]  Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5: 376–385. doi: 10.1016/j.chom.2009.03.003
[25]  Berger JR, Houff S (2008) Neurological complications of herpes simplex virus type 2 infection. Arch Neurol 65: 596–600. doi: 10.1001/archneur.65.5.596
[26]  Boyington JC, Sun PD (2002) A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol Immunol 38: 1007–1021. doi: 10.1016/s0161-5890(02)00030-5
[27]  Ishido S, Choi JK, Lee BS, Wang C, DeMaria M, et al. (2000) Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity 13: 365–374. doi: 10.1016/s1074-7613(00)00036-4
[28]  McSharry BP, Burgert HG, Owen DP, Stanton RJ, Prod'homme V, et al. (2008) Adenovirus E3/19K promotes evasion of NK cell recognition by intracellular sequestration of the NKG2D ligands major histocompatibility complex class I chain-related proteins A and B. J Virol 82: 4585–4594. doi: 10.1128/jvi.02251-07
[29]  Middeldorp JM, Pegtel DM (2008) Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. Semin Cancer Biol 18: 388–396. doi: 10.1016/j.semcancer.2008.10.004
[30]  Bosnjak L, Miranda-Saksena M, Koelle DM, Boadle RA, Jones CA, et al. (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174: 2220–2227. doi: 10.4049/jimmunol.174.4.2220
[31]  Blais ME, Dong T, Rowland-Jones S (2011) HLA-C as a mediator of natural killer and T-cell activation: spectator or key player? Immunology 133: 1–7. doi: 10.1111/j.1365-2567.2011.03422.x
[32]  Groth A, Kloss S, von Strandmann EP, Koehl U, Koch J (2011) Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance. J Innate Immun 3: 344–354. doi: 10.1159/000327014
[33]  Odom CI, Gaston DC, Markert JM, Cassady KA (2012) Human herpesviridae methods of natural killer cell evasion. Adv Virol 2012: 359869. doi: 10.1155/2012/359869
[34]  Thapa M, Kuziel WA, Carr DJ (2007) Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J Virol 81: 3704–3713. doi: 10.1128/jvi.02626-06
[35]  Kim M, Osborne NR, Zeng W, Donaghy H, McKinnon K, et al. (2012) Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes. J Immunol 188: 4158–4170. doi: 10.4049/jimmunol.1103450
[36]  Galocha B, Hill A, Barnett BC, Dolan A, Raimondi A, et al. (1997) The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J Exp Med 185: 1565–1572. doi: 10.1084/jem.185.9.1565
[37]  Kulpa DA, Collins KL (2011) The emerging role of HLA-C in HIV-1 infection. Immunology 134: 116–122. doi: 10.1111/j.1365-2567.2011.03474.x
[38]  Bauman Y, Nachmani D, Vitenshtein A, Tsukerman P, Drayman N, et al. (2011) An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9: 93–102. doi: 10.1016/j.chom.2011.01.008
[39]  Thomas M, Boname JM, Field S, Nejentsev S, Salio M, et al. (2008) Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl Acad Sci U S A 105: 1656–1661. doi: 10.1073/pnas.0707883105
[40]  Spaggiari GM, Carosio R, Pende D, Marcenaro S, Rivera P, et al. (2001) NK cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. Eur J Immunol 31: 1656–1665. doi: 10.1002/1521-4141(200106)31:6<1656::aid-immu1656>3.0.co;2-v
[41]  Han JY, Miller SA, Wolfe TM, Pourhassan H, Jerome KR (2009) Cell type-specific induction and inhibition of apoptosis by Herpes Simplex virus type 2 ICP10. J Virol 83: 2765–2769. doi: 10.1128/jvi.02088-08
[42]  van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, et al. (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4: 609–615. doi: 10.1038/sj.embor.embor865
[43]  Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17: 314–317. doi: 10.1038/ng1197-314
[44]  Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, et al. (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409: 1055–1060. doi: 10.1038/35059110
[45]  Mandelboim O, Malik P, Davis DM, Jo CH, Boyson JE, et al. (1999) Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc Natl Acad Sci U S A 96: 5640–5644. doi: 10.1073/pnas.96.10.5640

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133