The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.
References
[1]
Groisman EA, Mouslim C (2006) Sensing by bacterial regulatory systems in host and non-host environments. Nat Rev Microbiol 4: 705–709. doi: 10.1038/nrmicro1478
[2]
Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183: 1835–1842. doi: 10.1128/jb.183.6.1835-1842.2001
[3]
O'Loughlin JL, Spinner JL, Minnich SA, Kobayashi SD (2010) Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect Immun 78: 773–782. doi: 10.1128/iai.00718-09
[4]
Falord M, M?der U, Hiron A, Débarbouillé M, Msadek T (2011) Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 6: e21323 doi:10.1371/journal.pone.0021323.
[5]
Epstein W (2003) The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320. doi: 10.1016/s0079-6603(03)75008-9
[6]
Ballal A, Basu B, Apte SKK (2007) The Kdp-ATPase system and its regulation. J Biosci 32: 559–568. doi: 10.1007/s12038-007-0055-7
[7]
Heermann R, Jung K (2012) K+ supply, osmotic stress, and the KdpD/KdpE two-component system. In: Gross R, Beier D, editors. Two-component systems in bacteria. Norfolk, UK: Caister Academic Press.
[8]
Heermann R, Jung K (2010) The complexity of the “simple" two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett 304: 97–106.
[9]
Brandon L, Dorus S, Epstein W, Altendorf K, Jung K (2000) Modulation of KdpD phosphatase implicated in the physiological expression of the kdp ATPase of Escherichia coli. Mol Microbiol 38: 1086–1092. doi: 10.1046/j.1365-2958.2000.02219.x
[10]
Su J, Gong H, Lai J, Main A, Lu S (2009) The potassium transporter Trk and external potassium modulate salmonella enterica protein secretion and virulence. Infect Immun 77: 667–675. doi: 10.1128/iai.01027-08
[11]
Chen Y-C, Chuang Y-C, Chang C-C, Jeang C-L, Chang M-C (2004) A K+ uptake protein, TrkA, is required for serum, protamine, and polymyxin B resistance in vibrio vulnificus. Infect Immun 72: 629–636. doi: 10.1128/iai.72.2.629-636.2004
[12]
Stingl K, Brandt S, Uhlemann E-M, Schmid R, Altendorf K, et al. (2006) Channel-mediated potassium uptake in Helicobacter pylori is essential for gastric colonization. EMBO J 26: 232–241. doi: 10.1038/sj.emboj.7601471
[13]
Alkhuder K, Meibom KL, Dubail I, Dupuis M, Charbit A (2010) Identification of trkH, encoding a potassium uptake protein required for Francisella tularensis systemic dissemination in mice. PLoS One 5: e8966 doi:10.1371/journal.pone.0008966.
[14]
Reeves EP, Lu H, Jacobs HL, Messina CGM, Bolsover S, et al. (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291–297. doi: 10.1038/416291a
[15]
Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Sa?d-Salim B, et al. (2005) Insights into mechanisms used by staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 175: 3907–3919. doi: 10.4049/jimmunol.175.6.3907
[16]
Hou JY, Graham JE, Clark-Curtiss JE (2002) Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infect Immun 70: 3714–3726. doi: 10.1128/iai.70.7.3714-3726.2002
[17]
Xue T, You Y, Hong D, Sun H, Sun B (2011) The Staphylococcus aureus KdpDE two-component system couples extracellular K+ sensing and Agr signaling to infection programming. Infect Immun 79: 2154–2167. doi: 10.1128/iai.01180-10
[18]
Zhao L, Xue T, Shang F, Sun H, Sun B (2010) Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun 78: 3506–3515. doi: 10.1128/iai.00131-10
[19]
Alegado RA, Chin C-Y, Monack DM, Tan M-W (2011) The two-component sensor kinase KdpD is required for salmonella typhimurium colonization of caenorhabditis elegans and survival in macrophages. Cell Microbiol 13: 1618–1637. doi: 10.1111/j.1462-5822.2011.01645.x
[20]
Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, et al. (2004) Global gene expression in staphylococcus aureus biofilms. J Bacteriol 186: 4665–4684. doi: 10.1128/jb.186.14.4665-4684.2004
[21]
Palazzolo-Ballance AM, Reniere ML, Braughton KR, Sturdevant DE, Otto M, et al. (2008) Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. J Immunol 180: 500–509. doi: 10.4049/jimmunol.180.1.500
[22]
Hanssen A-M, Ericson Sollid JU (2006) SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46: 8–20. doi: 10.1111/j.1574-695x.2005.00009.x
[23]
Musher D, Verbrugh H, Verhoef J (1981) Suppression of phagocytosis and chemotaxis by cell wall components of Staphylococcus aureus. J Immunol 127: 84–88.
[24]
Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V (2009) The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). PLoS Pathog 5: e1000553 doi:10.1371/journal.ppat.1000553.
[25]
Njoroge JW, Nguyen Y, Curtis MM, Moreira CG, Sperandio V (2012) Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic escherichia coli. mBio 3: e00280–12 doi:10.1128/mBio.00280-12.
[26]
Garzoni C, Francois P, Huyghe A, Couzinet S, Tapparel C, et al. (2007) A global view of Staphylococcus aureus whole genome expression upon internalization in human epithelial cells. BMC Genomics 8: 171–185. doi: 10.1186/1471-2164-8-171
[27]
Koziel J, Maciag-Gudowska A, Mikolajczyk T, Bzowska M, Sturdevant DE, et al. (2009) Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One 4: e5210 doi:10.1371/journal.pone.0005210.
[28]
Sukumaran SK, Shimada H, Prasadarao NV (2003) Entry and intracellular replication of Escherichia coli K1 in macrophages require expression of outer membrane protein A. Infect Immun 71: 5951–5961. doi: 10.1128/iai.71.10.5951-5961.2003
[29]
Melleg?rd H, Lindb?ck T, Christensen BE, Kuipers OP, Granum PE (2011) Transcriptional responses of Bacillus cereus towards challenges with the polysaccharide chitosan. PLoS One 6: e24304 doi:10.1371/journal.pone.0024304.
[30]
Ceragioli M, Mols M, Moezelaar R, Ghelardi E, Senesi S, et al. (2010) Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments. Appl Environ Microbiol 76: 3352–3360. doi: 10.1128/aem.03003-09
[31]
Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, et al. (2005) Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122: 461–472. doi: 10.1016/j.cell.2005.05.030
[32]
Mitrophanov AY, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22: 2601–2611. doi: 10.1101/gad.1700308
[33]
Buelow DR, Raivio TL (2010) Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases. Mol Microbiol 75: 547–566. doi: 10.1111/j.1365-2958.2009.06982.x
[34]
Lüttmann D, Heermann R, Zimmer B, Hillmann A, Rampp IS, et al. (2009) Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIANtr in Escherichia coli. Mol Microbiol 72: 978–994. doi: 10.1111/j.1365-2958.2009.06704.x
[35]
Jung K, Altendorf K (1998) Individual substitutions of clustered arginine residues of the sensor kinase KdpD of Escherichia coli modulate the ratio of kinase to phosphatase activity. J Biol Chem 273: 26415–26420. doi: 10.1074/jbc.273.41.26415
[36]
Heermann R, Altendorf K, Jung K (2000) The hydrophilic N-terminal domain complements the membrane-anchored C-terminal domain of the sensor kinase KdpD of Escherichia coli. J Biol Chem 275: 17080–17085. doi: 10.1074/jbc.m000093200
[37]
Heermann R, Weber A, Mayer B, Ott M, Hauser E, et al. (2009) The universal stress protein UspC scaffolds the KdpD/KdpE signaling cascade of Escherichia coli under salt stress. J Mol Biol 386: 134–148. doi: 10.1016/j.jmb.2008.12.007
[38]
Vlisidou I, Eleftherianos I, Dorus S, Yang G, French-Constant RH, et al. (2010) The KdpD/KdpE two-component system of Photorhabdus asymbiotica promotes bacterial survival within M. sexta hemocytes. J Invertebr Pathol 105: 352–362. doi: 10.1016/j.jip.2010.09.020
[39]
Siegele DA (2005) Universal stress proteins in Escherichia coli. J Bacteriol 187: 6253–6254. doi: 10.1128/jb.187.18.6253-6254.2005
[40]
Heermann R, Fuchs T (2008) Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity. BMC Genomics 9: 40–61. doi: 10.1186/1471-2164-9-40
[41]
Heermann R, Lippert M-L, Jung K (2009) Domain swapping reveals that the N-terminal domain of the sensor kinase KdpD in Escherichia coli is important for signaling. BMC Microbiol 9: 133–144. doi: 10.1186/1471-2180-9-133
[42]
Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, et al. (2003) Deletion of two-component regulatory systems increases the virulence of mycobacterium tuberculosis. Infect Immun 71: 1134–1140. doi: 10.1128/iai.71.3.1134-1140.2003
[43]
Steyn AJC, Joseph J, Bloom BR (2003) Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol Microbiol 47: 1075–1089. doi: 10.1046/j.1365-2958.2003.03356.x
[44]
Henderson B, Martin A (2011) Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79: 3476–3491. doi: 10.1128/iai.00179-11
[45]
Ueguchi C, Mizuno T (1993) The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor. EMBO J 12: 1039–1046.
[46]
Lüttmann D, G?pel Y, G?rke B (2012) The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 86: 96–110. doi: 10.1111/j.1365-2958.2012.08176.x
[47]
Moule MG, Monack DM, Schneider DS (2010) Reciprocal analysis of francisella novicida infections of a drosophila melanogaster model reveal host-pathogen conflicts mediated by reactive oxygen and imd-regulated innate immune response. PLoS Pathog 6: e1001065 doi:10.1371/journal.ppat.1001065.
[48]
Weiss DS, Brotcke A, Henry T, Margolis JJ, Chan K, et al. (2007) In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104: 6037–6042. doi: 10.1073/pnas.0609675104
[49]
Rasko DA, Sperandio V (2010) Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov 9: 117–128. doi: 10.1038/nrd3013
[50]
Sardesai AA, Gowrishankar J (2001) Trans-acting mutations in loci other than kdpDE that affect kdp operon regulation in escherichia coli: effects of cytoplasmic thiol oxidation status and nucleoid protein H-NS on kdp expression. J Bacteriol 183: 86–93. doi: 10.1128/jb.183.1.86-93.2001
[51]
Battistuzzi F, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4: 44–57.
[52]
Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci U S A 101: 3759–3764. doi: 10.1073/pnas.0308701101
[53]
Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93: 259–266. doi: 10.1007/s00114-006-0106-1
[54]
Ehrt S, Schnappinger D (2009) Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11: 1170–1178. doi: 10.1111/j.1462-5822.2009.01335.x