[1] | Klinkert B, Narberhaus F (2009) Microbial thermosensors. Cell Mol Life Sci 66: 2661–2676. doi: 10.1007/s00018-009-0041-3
|
[2] | Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, et al. (2004) Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 72: 4731–4740. doi: 10.1128/iai.72.8.4731-4740.2004
|
[3] | Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ (2012) Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 11: 1324–1332. doi: 10.1128/ec.00032-12
|
[4] | Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, et al. (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16: 2576–2589. doi: 10.1093/emboj/16.10.2576
|
[5] | McCusker JH, Clemons KV, Stevens DA, Davis RW (1994) Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42°C and form pseudohyphae. Infect Immun 62: 5447–5455.
|
[6] | Maresca B, Kobayashi GS (1989) Dimorphism in Histoplasma capsulatum: A model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 53: 186–209. doi: 10.1007/978-1-4615-2834-0_17
|
[7] | Gow NA, Brown AJ, Odds FC (2002) Fungal morphogenesis and host invasion. Curr Opin Microbiol 5: 366–371. doi: 10.1016/s1369-5274(02)00338-7
|
[8] | Lachke SA, Lockhart SR, Daniels KJ, Soll DR (2003) Skin facilitates Candida albicans mating. Infect Immun 71: 4970–4976. doi: 10.1128/iai.71.9.4970-4976.2003
|
[9] | Wu C (1995) Heat shock transcription factors: Structure and regulation. Annu Rev Cell Dev Biol 11: 441–469. doi: 10.1146/annurev.cb.11.110195.002301
|
[10] | Sorger PK, Pelham HRB (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54: 855–864. doi: 10.1016/s0092-8674(88)91219-6
|
[11] | Nicholls S, Leach MD, Priest CL, Brown AJ (2009) Role of the heat shock transcription factor, Hsf1, in a major fungal pathogen that is obligately associated with warm-blooded animals. Mol Microbiol 74: 844–861. doi: 10.1111/j.1365-2958.2009.06883.x
|
[12] | Metzger MB, Michaelis S (2009) Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell 20: 1006–1019. doi: 10.1091/mbc.e08-02-0140
|
[13] | Geiler-Samerotte KA, Dion MF, Budnik BA, Wang SM, Hartl DL, et al. (2011) Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc Natl Acad Sci U S A 108: 680–685. doi: 10.1073/pnas.1017570108
|
[14] | Carratu L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, et al. (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci U S A 93: 3870–3875. doi: 10.1073/pnas.93.9.3870
|
[15] | Gargano S, Di Lallo G, Kobayashi GS, Maresca B (1995) A temperature-sensitive strain of Histoplasma capsulatum has an altered Δ9-fatty acid desaturase gene. Lipids 30: 899–906. doi: 10.1007/bf02537480
|
[16] | Kraus PR, Boily MJ, Giles SS, Stajich JE, Allen A, et al. (2004) Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot Cell 3: 1249–1260. doi: 10.1128/ec.3.5.1249-1260.2004
|
[17] | Zhang S, Skalsky Y, Garfinkel DJ (1999) MGA2 or SPT23 is required for transcription of the Δ9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151: 473–483.
|
[18] | Chowdhury S, Maris C, Allain FH, Narberhaus F (2006) Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25: 2487–2497. doi: 10.1038/sj.emboj.7601128
|
[19] | Kortmann J, Narberhaus F (2012) Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 10: 255–265. doi: 10.1038/nrmicro2730
|
[20] | Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, et al. (2012) Genome-wide measurement of RNA folding energies. Mol Cell 48: 169–181. doi: 10.1016/j.molcel.2012.08.008
|
[21] | Leach MD, Tyc KM, Brown AJP, Klipp E (2012) Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS ONE 7: e32467 doi:10.1371/journal.pone.0032467.
|
[22] | Craig EA, Jacobsen K (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38: 841–849. doi: 10.1016/0092-8674(84)90279-4
|
[23] | Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, et al. (2012) Quantitative analysis of Hsp90-client interactions reveals principles of substrate recognition. Cell 150: 987–1001. doi: 10.1016/j.cell.2012.06.047
|
[24] | Duina AA, Kalton HM, Gaber RF (1998) Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 273: 18974–18978. doi: 10.1074/jbc.273.30.18974
|
[25] | Leach MD, Budge S, Walker L, Munro C, Cowen LE, et al. (2012) Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathog 8: e1003069 doi:10.1371/journal.ppat.1003069.
|
[26] | Leach MD, Klipp E, Cowen LE, Brown AJ (2012) Fungal Hsp90: A biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol 10: 693–704. doi: 10.1038/nrmicro2875
|