Distinct phylogenetic lineages of Mycobacterium tuberculosis (MTB) cause disease in patients of particular genetic ancestry, and elicit different patterns of cytokine and chemokine secretion when cultured with human macrophages in vitro. Circulating and antigen-stimulated concentrations of these inflammatory mediators might therefore be expected to vary significantly between tuberculosis patients of different ethnic origin. Studies to characterise such variation, and to determine whether it relates to host or bacillary factors, have not been conducted. We therefore compared circulating and antigen-stimulated concentrations of 43 inflammatory mediators and 14 haematological parameters (inflammatory profile) in 45 pulmonary tuberculosis patients of African ancestry vs. 83 patients of Eurasian ancestry in London, UK, and investigated the influence of bacillary and host genotype on these profiles. Despite having similar demographic and clinical characteristics, patients of differing ancestry exhibited distinct inflammatory profiles at presentation: those of African ancestry had lower neutrophil counts, lower serum concentrations of CCL2, CCL11 and vitamin D binding protein (DBP) but higher serum CCL5 concentrations and higher antigen-stimulated IL-1 receptor antagonist and IL-12 secretion. These differences associated with ethnic variation in host DBP genotype, but not with ethnic variation in MTB strain. Ethnic differences in inflammatory profile became more marked following initiation of antimicrobial therapy, and immunological correlates of speed of elimination of MTB from the sputum differed between patients of African vs. Eurasian ancestry. Our study demonstrates a hitherto unappreciated degree of ethnic heterogeneity in inflammatory profile in tuberculosis patients that associates primarily with ethnic variation in host, rather than bacillary, genotype. Candidate immunodiagnostics and immunological biomarkers of response to antimicrobial therapy should be derived and validated in tuberculosis patients of different ethnic origin.
References
[1]
Gagneux S (2012) Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 367: 850–859. doi: 10.1098/rstb.2011.0316
[2]
Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A 101: 4871–4876. doi: 10.1073/pnas.0305627101
[3]
Baker L, Brown T, Maiden MC, Drobniewski F (2004) Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10: 1568–1577. doi: 10.3201/eid1009.040046
[4]
Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, et al. (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103: 2869–2873. doi: 10.1073/pnas.0511240103
[5]
Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, et al. (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47: 1119–1128. doi: 10.1128/jcm.02142-08
[6]
Hoal-van Helden EG, Stanton LA, Warren R, Richardson M, van Helden PD (2001) Diversity of in vitro cytokine responses by human macrophages to infection by Mycobacterium tuberculosis strains. Cell Biol Int 25: 83–90. doi: 10.1006/cbir.2000.0680
Theus SA, Cave MD, Eisenach KD (2005) Intracellular macrophage growth rates and cytokine profiles of Mycobacterium tuberculosis strains with different transmission dynamics. J Infect Dis 191: 453–460. doi: 10.1086/425936
[9]
Newton SM, Smith RJ, Wilkinson KA, Nicol MP, Garton NJ, et al. (2006) A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci U S A 103: 15594–15598. doi: 10.1073/pnas.0604283103
[10]
Tanveer M, Hasan Z, Kanji A, Hussain R, Hasan R (2009) Reduced TNF-alpha and IFN-gamma responses to Central Asian strain 1 and Beijing isolates of Mycobacterium tuberculosis in comparison with H37Rv strain. Trans R Soc Trop Med Hyg 103: 581–587. doi: 10.1016/j.trstmh.2009.03.014
[11]
Portevin D, Gagneux S, Comas I, Young D (2011) Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7: e1001307. doi: 10.1371/journal.ppat.1001307
[12]
Martineau AR, Timms PM, Bothamley GH, Hanifa Y, Islam K, et al. (2011) High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet 377: 242–250. doi: 10.1016/s0140-6736(10)61889-2
[13]
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, et al. (2002) Genetic structure of human populations. Science 298: 2381–2385. doi: 10.1126/science.1078311
[14]
Fox W, Hutton PW, Sutherland I, Williams AW (1956) A comparison of acute extensive pulmonary tuberculosis and its response to chemotherapy in Britain and Uganda. Tubercle 37: 435–450. doi: 10.1016/s0041-3879(56)80187-6
[15]
Mac Kenzie WR, Heilig CM, Bozeman L, Johnson JL, Muzanye G, et al. (2011) Geographic differences in time to culture conversion in liquid media: Tuberculosis Trials Consortium study 28. Culture conversion is delayed in Africa. PLoS ONE 6: e18358. doi: 10.1371/journal.pone.0018358
[16]
Jolliffe IT (2002) Principal Component Analysis. New York: Springer-Verlag.
[17]
Chambers JC, Eda S, Bassett P, Karim Y, Thompson SG, et al. (2001) C-reactive protein, insulin resistance, central obesity, and coronary heart disease risk in Indian Asians from the United Kingdom compared with European whites. Circulation 104: 145–150. doi: 10.1161/01.cir.104.2.145
[18]
Brown T, Nikolayevskyy V, Velji P, Drobniewski F (2010) Associations between Mycobacterium tuberculosis strains and phenotypes. Emerg Infect Dis 16: 272–280. doi: 10.3201/eid1602.091032
[19]
Wheeler E, Miller EN, Peacock CS, Donaldson IJ, Shaw MA, et al. (2006) Genome-wide scan for loci influencing quantitative immune response traits in the Belem family study: comparison of methods and summary of results. Ann Hum Genet 70: 78–97. doi: 10.1111/j.1529-8817.2005.00223.x
[20]
Stein CM, Zalwango S, Malone LL, Won S, Mayanja-Kizza H, et al. (2008) Genome scan of M. tuberculosis infection and disease in Ugandans. PLoS ONE 3: e4094. doi: 10.1371/journal.pone.0004094
[21]
Martineau AR, Leandro AC, Anderson ST, Newton SM, Wilkinson KA, et al. (2010) Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur Respir J 35: 1106–1112. doi: 10.1183/09031936.00087009
[22]
Coussens AK, Wilkinson RJ, Hanifa Y, Nikolayevskyy V, Elkington PT, et al. (2012) Vitamin D accelerates resolution of inflammatory responses during tuberculosis treatment. Proc Natl Acad Sci U S A 109: 15449–15454. doi: 10.1073/pnas.1200072109
[23]
Brahmbhatt S, Black GF, Carroll NM, Beyers N, Salker F, et al. (2006) Immune markers measured before treatment predict outcome of intensive phase tuberculosis therapy. Clin Exp Immunol 146: 243–252. doi: 10.1111/j.1365-2249.2006.03211.x
[24]
Djoba Siawaya JF, Bapela NB, Ronacher K, Beyers N, van Helden P, et al. (2008) Differential expression of interleukin-4 (IL-4) and IL-4 delta 2 mRNA, but not transforming growth factor beta (TGF-beta), TGF-beta RII, Foxp3, gamma interferon, T-bet, or GATA-3 mRNA, in patients with fast and slow responses to antituberculosis treatment. Clin Vaccine Immunol 15: 1165–1170. doi: 10.1128/cvi.00084-08
[25]
Djoba Siawaya JF, Bapela NB, Ronacher K, Veenstra H, Kidd M, et al. (2008) Immune parameters as markers of tuberculosis extent of disease and early prediction of anti-tuberculosis chemotherapy response. J Infect 56: 340–347. doi: 10.1016/j.jinf.2008.02.007
[26]
Modiano D, Petrarca V, Sirima BS, Nebie I, Diallo D, et al. (1996) Different response to Plasmodium falciparum malaria in west African sympatric ethnic groups. Proc Natl Acad Sci U S A 93: 13206–13211. doi: 10.1073/pnas.93.23.13206
[27]
Winkler C, An P, O'Brien SJ (2004) Patterns of ethnic diversity among the genes that influence AIDS. Hum Mol Genet 13 Spec No 1: R9–19.
[28]
Chun RF, Lauridsen AL, Suon L, Zella LA, Pike JW, et al. (2010) Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 95: 3368–3376. doi: 10.1210/jc.2010-0195
[29]
Speeckaert M, Huang G, Delanghe JR, Taes YE (2006) Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta 372: 33–42. doi: 10.1016/j.cca.2006.03.011
[30]
Mwantembe O, Gaillard MC, Barkhuizen M, Pillay V, Berry SD, et al. (2001) Ethnic differences in allelic associations of the interleukin-1 gene cluster in South African patients with inflammatory bowel disease (IBD) and in control individuals. Immunogenetics 52: 249–254. doi: 10.1007/s002510000265
[31]
Feng WX, Flores-Villanueva PO, Mokrousov I, Wu XR, Xiao J, et al. (2012) CCL2–2518 (A/G) polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 16: 150–156. doi: 10.5588/ijtld.11.0205
[32]
Pareek M, Evans J, Innes J, Smith G, Hingley-Wilson S, et al. (2013) Ethnicity and mycobacterial lineage as determinants of tuberculosis disease phenotype. Thorax 68: 221–229. doi: 10.1136/thoraxjnl-2012-201824
[33]
Weiner M, Peloquin C, Burman W, Luo CC, Engle M, et al. (2010) Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother 54: 4192–4200. doi: 10.1128/aac.00353-10
[34]
Dominguez-Castellano A, Muniain MA, Rodriguez-Bano J, Garcia M, Rios MJ, et al. (2003) Factors associated with time to sputum smear conversion in active pulmonary tuberculosis. Int J Tuberc Lung Dis 7: 432–438.
[35]
Office of National Statistics (2003) Ethnic group statistics: a guide for the collection and classification of ethnicity data. London: HMSO.
[36]
Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27: 393–422. doi: 10.1146/annurev.immunol.021908.132703
[37]
Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, et al. (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17: 520–525. doi: 10.1093/bioinformatics/17.6.520
[38]
Wichura MJ (2006) The Coordinate-Free Approach to Linear Models. Cambridge: Cambridge University Press. Chapter 6, 110–136.
[39]
McCullagh P (1980) Regression models for ordinal data (with discussion). J Roy Statist Soc B 42: 109–142.
[40]
Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.