全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Asparagine Repeats in Plasmodium falciparum Proteins: Good for Nothing?

DOI: 10.1371/journal.ppat.1003488

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C (2011) Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med 8: e1001142 doi:10.1371/journal.pmed.1001142.
[2]  Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511. doi: 10.1038/nature01097
[3]  Aravind L, Iyer LM, Wellems TE, Miller LH (2003) Plasmodium biology: genomic gleanings. Cell 115: 771–785. doi: 10.1016/s0092-8674(03)01023-7
[4]  Kemp DJ, Coppel RL, Anders RF (1987) Repetitive proteins and genes of malaria. Annu Rev Microbiol 41: 181–208. doi: 10.1146/annurev.mi.41.100187.001145
[5]  Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18: 269–285. doi: 10.1016/0097-8485(94)85023-2
[6]  Eichinger L, Pachebat JA, Gl?ckner G, Rajandream MA, Sucgang R, et al. (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435: 43–57. doi: 10.1038/nature03481
[7]  Singh GP, Chandra BR, Bhattacharya A, Akhouri RR, Singh SK, et al. (2004) Hyper-expansion of asparagines correlates with an abundance of proteins with prion-like domains in Plasmodium falciparum. Mol Biochem Parasitol 137: 307–319. doi: 10.1016/j.molbiopara.2004.05.016
[8]  Zilversmit MM, Volkman SK, DePristo MA, Wirth DF, Awadalla P, et al. (2010) Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. Mol Biol Evol 27: 2198–2209. doi: 10.1093/molbev/msq108
[9]  Halfmann R, Alberti S, Krishnan R, Lyle N, O'Donnell CW, et al. (2011) Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol Cell 43: 72–84. doi: 10.1016/j.molcel.2011.05.013
[10]  Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137: 146–158. doi: 10.1016/j.cell.2009.02.044
[11]  Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid – from bacteria to humans. Trends Biochem Sci 32: 217–224. doi: 10.1016/j.tibs.2007.03.003
[12]  Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75: 333–366. doi: 10.1146/annurev.biochem.75.101304.123901
[13]  Patino MM, Liu JJ, Glover JR, Lindquist S (1996) Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273: 622–626. doi: 10.1126/science.273.5275.622
[14]  Si K, Choi Y-B, White-Grindley E, Majumdar A, Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140: 421–435. doi: 10.1016/j.cell.2010.01.008
[15]  Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, et al. (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146: 448–461. doi: 10.1016/j.cell.2011.06.041
[16]  Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, et al. (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144: 67–78. doi: 10.1016/j.cell.2010.11.050
[17]  Seuring C, Greenwald J, Wasmer C, Wepf R, Saupe SJ, et al. (2012) The mechanism of toxicity in HET-S/HET-s prion incompatibility. PLoS Biol 10: e1001451 doi:10.1371/journal.pbio.1001451.
[18]  Muralidharan V, Oksman A, Pal P, Lindquist S, Goldberg DE (2012) Plasmodium falciparum?heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nat Commun 3: 1310. doi: 10.1038/ncomms2306
[19]  Frugier M, Bour T, Ayach M, Santos MAS, Rudinger-Thirion J, et al. (2010) Low complexity regions behave as tRNA sponges to help co-translational folding of plasmodial proteins. FEBS Lett 584: 448–454. doi: 10.1016/j.febslet.2009.11.004
[20]  Verra F, Hughes AL (1999) Biased amino acid composition in repeat regions of Plasmodium antigens. Mol Biol Evol 16: 627–633. doi: 10.1093/oxfordjournals.molbev.a026145
[21]  Hughes AL (2004) The evolution of amino acid repeat arrays in Plasmodium and other organisms. J Mol Evol 59: 528–535. doi: 10.1007/s00239-004-2645-4
[22]  Karlin S, Brocchieri L, Bergman A, Mrazek J, Gentles AJ (2002) Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A 99: 333–338. doi: 10.1073/pnas.012608599
[23]  Muralidharan V, Oksman A, Iwamoto M, Wandless TJ, Goldberg DE (2011) Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag. Proc Natl Acad Sci U S A 108: 4411–4416 doi:10.1073/pnas.1018449108.
[24]  Xue HY, Forsdyke DR (2003) Low-complexity segments in Plasmodium falciparum proteins are primarily nucleic acid level adaptations. Mol Biochem Parasitol 128: 21–32. doi: 10.1016/s0166-6851(03)00039-2
[25]  Anderson TJC, Patel J, Ferdig MT (2009) Gene copy number and malaria biology. Trends Parasitol 25: 336–343. doi: 10.1016/j.pt.2009.04.005
[26]  Dalby AR (2009) A comparative proteomic analysis of the simple amino acid repeat distributions in Plasmodia reveals lineage specific amino acid selection. PLoS ONE 4: e6231 doi:10.1371/journal.pone.0006231.
[27]  Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396: 336–342. doi: 10.1038/24550

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133