[1] | Cantrell SA, Dianese JC, Fell J, Gunde-Cimerman N, Zalar P (2011) Unusual fungal niches. Mycologia 103: 1161–1174 10.3852/11-108.
|
[2] | Sexton AC, Howlett BJ (2006) Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell 5: 1941–1949 doi:10.1128/EC.00277-06.
|
[3] | Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43: 205–227 doi:10.1146/annurev.phyto.43.040204.135923.
|
[4] | Casadevall A, Pirofski LA (2003) The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 1: 17–24 doi:10.1038/nrmicro732.
|
[5] | Kabbage M, Williams B, Dickman MB (2013) Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog 9: e1003287 doi:10.1371/journal.ppat.1003287.
|
[6] | St Leger RJ, Nelson JO, Screen SE (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145: 2691–2699.
|
[7] | Benoit G, deChauvin MF, Cordonnier C, Astier A, Bernaudin JF (1985) Oxalic acid levels in bronchoalveolar lavage fluid from patients with invasive pulmonary aspergillosis. Am Rev Respir Dis 132: 748–751.
|
[8] | Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147: 742–758 doi:10.1016/j.cell.2011.10.033.
|
[9] | Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18: 1247–1256 doi:10.1038/cdd.2011.37.
|
[10] | Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6: 201–211 doi:10.1111/j.1462-5822.2004.00361.x.
|
[11] | Sharon A, Finkelshtein A (2009) Programmed cell death in fungus–plant interactions. In: Esser K, Deising H, editors. The mycota. 2nd edition. Heidelberg: Springer. pp. 221–236. doi:10.1007/978-3-540-87407-2_12.
|
[12] | Williams B, Dickman M (2008) Plant programmed cell death: can't live with it; can't live without it. Mol Plant Pathol 9: 531–544 doi:10.1111/j.1364-3703.2008.00473.x.
|
[13] | Deretic V, Levine B (2009) Autophagy, immunity; microbial adaptations. Cell Host Microbe 5: 527–549 doi:10.1016/j.chom.2009.05.016.
|
[14] | Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10: 751–757 doi:10.1016/S0960-9822(00)00560-1.
|
[15] | Navarre WW, Zychlinsky A (2000) Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell Microbiol 2: 265–273 doi:10.1046/j.1462-5822.2000.00056.x.
|
[16] | Dagenais TRT, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin Microbiol Rev 22: 447–465 doi:10.1371/journal.ppat.1002107.
|
[17] | Stanzani M, Orciuolo E, Lewis R, Kontoyiannis DP, Martins SL, et al. (2005) Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood 105: 2258–2265 doi:10.1182/blood-2004-09-3421.
|
[18] | Wang H, Yadav JS (2006) DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotoxicity in murine alveolar macrophage cell line MH-S by methanol-extracted Stachybotrys chartarum toxins,. Toxicol Appl Pharmacol 214: 297–308. doi: 10.1016/j.taap.2006.01.002
|
[19] | Dickman MB, de Figueiredo P (2011) Comparative pathobiology of fungal pathogens of plants and animals. PLoS Pathog 7: e1002324 doi:10.1371/journal.ppat.1002324.
|
[20] | Medeiros AI, Bonato VL, Malheiro A, Dias AR, Silva CL, et al. (2002) Histoplasma inhibits apoptosis and Mac-1 expression in leucocytes. Scand J Immunol 56: 392–398 doi:10.1046/j.1365-3083.2002.01142.x.
|
[21] | Eichmann R, Schultheiss H, Kogel KH, Huckelhoven R (2004) The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Mol Plant Microbe Interact 17: 484–490 doi:10.1094/mpmi.2004.17.5.484.
|
[22] | Babaeizad V, Imani J, Kogel KH, Eichmann R, Hückelhoven R (2008) Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor Appl Genet 118: 455–463 doi:10.1007/s00122-008-0912-2.
|
[23] | Imani J, Baltruschat H, Stein E, Jia G, Vogelsberg J, et al. (2006) Expression of barley BAX inhibitor-1 in carrots confers resistance to Botrytis cinerea. Mol Plant Pathol 7: 279–284 doi:10.1111/j.1364-3703.2006.00339.x.
|
[24] | Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trend Microbiol 16: 276–283 doi:10.1016/j.tim.2008.03.003.
|
[25] | Sharon A, Finkelstein A, Shlezinger N, Hatam I (2009) Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 33: 833–854 doi:10.1111/j.1574- 6976.2009.00180.x.
|
[26] | Shlezinger N, Goldfinger N, Sharon A (2012) Apoptotic-like programed cell death in fungi: the benefits in filamentous species. Front Oncol 2: 97 doi:10.3389/fonc.2012.00097.
|
[27] | Shlezinger N, Doron A, Sharon A (2011) Apoptosis-like programmed cell death in the grey mould fungus Botrytis cinerea: genes and their role in pathogenicity. Biochem Soc Trans 39: 1493–1498 doi:10.1042/BST0391493.
|
[28] | Ito S, Ihara T, Tamura H, Tanaka S, Ikeda T, et al. (2007) α-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581: 3217–3222 doi:10.1016/j.febslet.2007.06.010.
|
[29] | Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas YF, et al. (2011) Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host- induced apoptotic-like cell death during plant infection. PLoS Pathog 7: e1002185 doi:10.1371/journal.ppat.1002185.
|