[1] | Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, et al. (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv13 doi:10.1126/scitranslmed.3004404.
|
[2] | Johnson EE, Wessling-Resnick M (2012) Iron metabolism and the innate immune response to infection. Microbes Infect 14: 207–216. doi: 10.1016/j.micinf.2011.10.001
|
[3] | Foley TL, Simeonov A (2012) Targeting iron assimilation to develop new antibacterials. Expert Opin Drug Discov 7: 831–847. doi: 10.1517/17460441.2012.708335
|
[4] | M?llmann U, Heinisch L, Bauernfeind A, K?hler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22: 615–624. doi: 10.1007/s10534-009-9219-2
|
[5] | Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2: 946–953. doi: 10.1038/nrmicro1046
|
[6] | Sutak R, Lesuisse E, Tachezy J, Richardson DR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16: 261–268. doi: 10.1016/j.tim.2008.03.005
|
[7] | Jung WH, Kronstad JW (2008) Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cell Microbiol 10: 277–284. doi: 10.1111/j.1462-5822.2007.01077.x
|
[8] | Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9: 1000–1012. doi: 10.1111/j.1567-1364.2009.00570.x
|
[9] | Kornitzer D (2009) Fungal mechanisms for host iron acquisition. Curr Opin Microbiol 12: 377–83. doi: 10.1016/j.mib.2009.05.005
|
[10] | Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10: 168–173. doi: 10.1128/ec.00279-10
|
[11] | Nobile CJ, Andes DR, Nett JE, Smith FJ Jr, Yue F, et al. (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2: e63 doi:10.1371/journal.ppat.0020063.
|
[12] | Fanning S, Xu W, Solis N, Woolford CA, Filler SG, et al. (2012) Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukaryot Cell 11: 896–904. doi: 10.1128/ec.00103-12
|
[13] | Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9: 109–118. doi: 10.1038/nrmicro2475
|
[14] | Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault JS, et al. (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10: 2180–2196. doi: 10.1111/j.1462-5822.2008.01198.x
|
[15] | Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, et al. (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4: e1000217 doi:10.1371/journal.ppat.1000217.
|
[16] | Heilmann CJ, Sorgo AG, Klis FM (2012) News from the fungal front: wall proteome dynamics and host–pathogen interplay. PLoS Pathog 8: e1003050 doi:10.1371/journal.ppat.1003050.
|
[17] | Weissman Z, Kornitzer D (2004) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53: 1209–1220. doi: 10.1111/j.1365-2958.2004.04199.x
|
[18] | Weissman Z, Shemer R, Conibear E, Kornitzer D (2008) An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69: 201–217. doi: 10.1111/j.1365-2958.2008.06277.x
|
[19] | Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156: 31–44.
|
[20] | Pérez A, Pedrós B, Murgui A, Casanova M, López-Ribot JL, et al. (2006) Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res 6: 1074–1084. doi: 10.1111/j.1567-1364.2006.00131.x
|
[21] | Pérez A, Ramage G, Blanes R, Murgui A, Casanova M, et al. (2011) Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain. FEMS Yeast Res 11: 273–284. doi: 10.1111/j.1567-1364.2010.00714.x
|
[22] | Ding C, Vidanes GM, Maguire SL, Guida A, Synnott JM, et al. (2011) Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans. PLoS ONE 6: e28151 doi:10.1371/journal.pone.0028151.
|
[23] | Lian TS, Simmer MI, D'Souza CA, Steen BR, Zuyderduyn SD, et al. (2005) Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 55: 1452–1472. doi: 10.1111/j.1365-2958.2004.04474.x
|
[24] | Biondo C, Mancuso G, Midiri A, Bombaci M, Messina L, et al. (2006) Identification of major proteins secreted by Cryptococcus neoformans. FEMS Yeast Res 6: 645–651. doi: 10.1111/j.1567-1364.2006.00043.x
|
[25] | Vecchiarelli A (2000) Immunoregulation by capsular components of Cryptococcus neoformans. Med Mycol 38: 407–417. doi: 10.1080/mmy.38.6.407.417
|
[26] | Vartivarian SE, Anaissie EJ, Cowart RE, Sprigg HA, Tingler MJ, et al. (1993) Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 167: 186–190. doi: 10.1093/infdis/167.1.186
|
[27] | Cadieux B, Lian T, Hu G, Wang J, Biondo C, et al. (2013) The mannoprotein Cig1 supports iron acquisition from heme and virulence in the pathogenic fungus Cryptococcus neoformans. J Infect Dis 207: 1339–1347. doi: 10.1093/infdis/jit029
|
[28] | O'Meara TR, Norton D, Price MS, Hay C, Clements MF, et al. (2010) Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 6: e1000776 doi:10.1371/journal.ppat.1000776.
|
[29] | Stojiljkovic I, Kumar V, Srinivasan N (1999) Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31: 429–442. doi: 10.1046/j.1365-2958.1999.01175.x
|
[30] | Hu G, Caza M, Cadieux B, Chan V, Liu V, et al. (2013) Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun 81: 292–302. doi: 10.1128/iai.01037-12
|
[31] | O'Meara TR, Holmer SM, Selvig K, Dietrich F, Alspaugh JA (2013) Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. mBio 4: e00522–12 doi:10.1128/mBio.00522-12.
|
[32] | Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102: 11076–11081. doi: 10.1073/pnas.0504266102
|
[33] | Vediyappan G, Rossignol T, d'Enfert C (2010) Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 54: 2096–2111. doi: 10.1128/aac.01638-09
|
[34] | Nett JE, Sanchez H, Cain MT, Andes DR (2010) Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202: 171–175. doi: 10.1086/651200
|
[35] | Robertson EJ, Wolf JM, Casadevall A (2012) EDTA inhibits biofilm formation, extracellular vesicular secretion, and shedding of the capsular polysaccharide glucuronoxylomannan by Cryptococcus neoformans. Appl Environ Microbiol 78: 7977–7984. doi: 10.1128/aem.01953-12
|
[36] | Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, et al. (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8: e1002848 doi:10.1371/journal.ppat.1002848.
|
[37] | Kumar P, Yang M, Haynes BC, Skowyra ML, Doering TL (2011) Emerging themes in cryptococcal capsule synthesis. Curr Opin Struct Biol 21: 597–602. doi: 10.1016/j.sbi.2011.08.006
|
[38] | Hameed S, Prasad T, Banerjee D, Chandra A, Mukhopadhyay CK, et al. (2008) Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. FEMS Yeast Res 8: 744–755. doi: 10.1111/j.1567-1364.2008.00394.x
|
[39] | Mochon AB, Jin Y, Kayala MA, Wingard JR, Clancy CJ, et al. (2010) Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog 6: e1000827 doi:10.1371/journal.ppat.1000827.
|