[1] | Chayakulkeeree M, Ghannoum M, Perfect J (2006) Zygomycosis: the re-emerging fungal infection. Eur J Clin Microbiol Infect Dis 25: 215–229. doi: 10.1007/s10096-006-0107-1
|
[2] | Ibrahim AS, Spellberg B (2006) Zygomycetes as agents of infectious disease in humans. In: Heitman J, Filler SG, Edwards Jr. JE, Mitchell AP, editors. Molecular Principles of Fungal Pathogenesis. Washington, DC: ASM Press. pp. 429–440.
|
[3] | Neblett Fanfair R, Benedict K, Bos J, Bennett SD, Lo Y-C, et al. (2012) Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med 367: 2214–2225. doi: 10.1056/nejmoa1204781
|
[4] | Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, et al. (2005) Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 41: 634–653. doi: 10.1086/432579
|
[5] | Spellberg B, Edwards J Jr, Ibrahim A (2005) Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev 18: 556–569. doi: 10.1128/cmr.18.3.556-569.2005
|
[6] | Kontoyiannis DP, Lionakis MS, Lewis RE, Chamilos G, Healy M, et al. (2005) Zygomycosis in a tertiary-care cancer center in the era of Aspergillus-active antifungal therapy: A case-control observational study of 27 recent cases. J Infect Dis 191: 1350–1360. doi: 10.1086/428780
|
[7] | Marr KA, Carter RA, Crippa F, Wald A, Corey L (2002) Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis 34: 909–917. doi: 10.1086/339202
|
[8] | Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human disease. Clin Microbiol Rev 13: 236–301. doi: 10.1128/cmr.13.2.236-301.2000
|
[9] | Kontoyiannis DP, Lewis RE (2006) Invasive zygomycosis: update on pathogenesis, clinical manifestations, and management. Infect Dis Clin North Am 20: 581–607. doi: 10.1016/j.idc.2006.06.003
|
[10] | Lanternier F, Sun H-Y, Ribaud P, Singh N, Kontoyiannis DP, et al. (2012) Mucormycosis in organ and stem cell transplant recipients. Clin Infect Dis 54: 1–8. doi: 10.1093/cid/cis195
|
[11] | Kwon-Chung KJ, Bennet JE (1992) Mucormycosis. Med Mycol. Philadelphia: Lea & Febiger. pp. 524–559.
|
[12] | Orlowski M (1991) Mucor dimorphism. Microbiol Mol Biol Rev 55: 234–258.
|
[13] | Bartnicki-Garcia S (1963) Symposium on biochemical bases of morphogenesis in fungi. III. Mold-yeast dimorphism of Mucor. Bacteriol Rev 27: 293–304.
|
[14] | Pasteur L (1876) Etudes sur la Biere. Paris, France: Gauthier-Villars.
|
[15] | Bartnicki-Garcia S, Nickerson WJ (1962) Induction of yeast-like development in Mucor by carbon dioxide. J Bacteriol 84: 829–840.
|
[16] | Bartnicki-Garcia S, Nickerson WJ (1962) Assimilation of carbon dioxide and morphogenesis Mucor rouxii. Biochim Biophys Acta 5: 548–551. doi: 10.1016/0006-3002(62)90314-1
|
[17] | Bartnicki-Garcia S, Nickerson WJ (1962) Nutrition, growth, and morphogenesis of Mucor rouxii. J Bacteriol 84: 841–858.
|
[18] | Friedenthal M, Epstein A, Passeron S (1974) Effect of potassium cyanide, glucose and anaerobiosis on morphogenesis of Mucor rouxii. J Gen Microbiol 82: 15–24. doi: 10.1099/00221287-82-1-15
|
[19] | Gordon PA, Stewart PR, Clark-Walker GD (1971) Fatty acid and sterol composition of Mucor genevensis in relation to dimorphism and anaerobic growth. J Bacteriol 107: 114–120.
|
[20] | Schulz BE, Kraepelin G, Hinkelmann W (1974) Factors affecting dimorphism in Mycotypha (Mucorales): a correlation with the fermentation/respiration equilibrium. J Gen Microbiol 82: 1–13. doi: 10.1099/00221287-82-1-1
|
[21] | Zorzopulos J, Jobbagy AJ, Terenzi HF (1973) Effects of ethylenediaminetetraacetate and chloramphenicol on mitochondrial activity and morphogenesis in Mucor rouxii. J Bacteriol 115: 1198–1204.
|
[22] | Clark-Walker GD (1973) Relationship between dimorphology and respiration in Mucor genevensis studied with chloramphenicol. J Bacteriol 116: 972–980.
|
[23] | Ito ET, Cihlar RL, Inderlied CB (1982) Lipid synthesis during morphogenesis of Mucor racemosus. J Bacteriol 152: 880–887.
|
[24] | Garcia JR, Hiatt WR, Peters J, Sypherd PS (1980) S-adenosylmethionine levels and protein methylation during morphogenesis of Mucor racemosus. J Bacteriol 142: 196–201.
|
[25] | Wolff AM, Appel KF, Petersen JB, Poulsen U, Arnau J (2002) Identification and analysis of genes involved in the control of dimorphism in Mucor circinelloides (syn. racemosus). FEMS Yeast Res 2: 203–213. doi: 10.1111/j.1567-1364.2002.tb00085.x
|
[26] | Lubbehusen T, Polo VGl, Rossi S, Nielsen J, Moreno S, et al. (2004) Protein kinase A is involved in the control of morphology and branching during aerobic growth of Mucor circinelloides. Microbiology 150: 143–150. doi: 10.1099/mic.0.26708-0
|
[27] | Ocampo J, McCormack B, Navarro E, Moreno S, Garre V, et al. (2012) Protein kinase A regulatory subunit isoforms regulate growth and differentiation in Mucor circinelloides: essential role of PKAR4. Eukaryot Cell 11: 989–1002. doi: 10.1128/ec.00017-12
|
[28] | Ocampo J, Fernandez Nunez L, Silva F, Pereyra E, Moreno S, et al. (2009) A subunit of protein kinase A regulates growth and differentiation in the fungus Mucor circinelloides. Eukaryot Cell 8: 933–944. doi: 10.1128/ec.00026-09
|
[29] | Zaremberg V, Donella-Deana A, Moreno S (2000) Mechanism of activation of cAMP-dependent protein kinase: in Mucor rouxii the apparent specific activity of the cAMP-activated holoenzyme is different than that of its free catalytic subunit. Arch Biochem Biophys 381: 74–82. doi: 10.1006/abbi.2000.1948
|
[30] | Paveto C, Passeron S, Corbin JD, Moreno S (1989) Two different intrachain cAMP sites in the cAMP-dependent protein kinase of the dimorphic fungus Mucor rouxii. Eur J Biochem 179: 429–434. doi: 10.1111/j.1432-1033.1989.tb14571.x
|
[31] | Pereyra E, Ingerfeld M, Anderson N, Jackson SL, Moreno S (2006) Mucor rouxii ultrastructure: cyclic AMP and actin cytoskeleton. Protoplasma 228: 189–199. doi: 10.1007/s00709-006-0184-0
|
[32] | Argimon S, Galello F, Pereyra E, Rossi S, Moreno S (2007) Mucor rouxii Rho1 protein; characterization and possible role in polarized growth. Antonie Van Leeuwenhoek 91: 237–251. doi: 10.1007/s10482-006-9113-7
|
[33] | Pereyra E, Argimon S, Jackson SL, Moreno S (2003) RGD-containing peptides and cyclic AMP have antagonistic roles in the morphology of Mucor rouxii. Protoplasma 222: 23–30. doi: 10.1007/s00709-003-0008-4
|
[34] | Pereyra E, Mizyrycki C, Moreno S (2000) Threshold level of protein kinase A activity and polarized growth in Mucor rouxii. Microbiology 146: 1949–1958.
|
[35] | Rossi S, Moreno S (1994) Regulation of protein kinase A subunits during germination of Mucor rouxii sporangiospores. Eur J Biochem 222: 501–506. doi: 10.1111/j.1432-1033.1994.tb18891.x
|
[36] | Pereyra E, Zaremberg V, Moreno S (1992) Effect of dibutyryl-cAMP on growth and morphology of germinating Mucor rouxii sporangiospores. Exp Mycol 16: 93–101. doi: 10.1016/0147-5975(92)90015-j
|
[37] | Roze LV, Mahanti N, Mehigh R, McConnell DG, Linz JE (1999) Evidence that MRas1 and MRas3 proteins are associated with distinct cellular functions during growth and morphogenesis in the fungus Mucor racemosus. Fungal Genet Biol 28: 171–189. doi: 10.1006/fgbi.1999.1177
|
[38] | Bastidas RJ, Heitman J (2009) Trimorphic stepping stones pave the way to fungal virulence. Proc Natl Acad Sci U S A 106: 351–352. doi: 10.1073/pnas.0811994106
|
[39] | Lo H-J, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939–949. doi: 10.1016/s0092-8674(00)80358-x
|
[40] | Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2: 1053–1060. doi: 10.1128/ec.2.5.1053-1060.2003
|
[41] | Klein BS, Tebbets B (2007) Dimorphism and virulence in fungi. Curr Opin Microbiol 10: 314–319. doi: 10.1016/j.mib.2007.04.002
|
[42] | Lin X (2009) Cryptococcus neoformans: morphogenesis, infection, and evolution. Infect Genet Evol 9: 401–416. doi: 10.1016/j.meegid.2009.01.013
|
[43] | Zheng X, Wang Y, Wang Y (2004) Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23: 1845–1856. doi: 10.1038/sj.emboj.7600195
|
[44] | Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155: 57–67.
|
[45] | Velagapudi R, Hsueh Y-P, Geunes-Boyer S, Wright JR, Heitman J (2009) Spores as infectious propagules of Cryptococcus neoformans. Infect Immun 77: 4345–4355. doi: 10.1128/iai.00542-09
|
[46] | Botts MR, Hull CM (2010) Dueling in the lung: how Cryptococcus spores race the host for survival. Curr Opin Microbiol 13: 437–442. doi: 10.1016/j.mib.2010.05.003
|
[47] | Giles SS, Dagenais TRT, Botts MR, Keller NP, Hull CM (2009) Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun 77: 3491–3500. doi: 10.1128/iai.00334-09
|
[48] | Magditch DA, Liu T-B, Xue C, Idnurm A (2012) DNA mutations mediate microevolution between host-adapted forms of the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 8: e1002936. doi: 10.1371/journal.ppat.1002936
|
[49] | Lee SC, Phadke S, Sun S, Heitman J (2012) Pseudohyphal growth of Cryptococcus neoformans is a reversible dimorphic transition in response to ammonium and requires the Amt1/2 ammonium permeases. Eukaryot Cell 11: 1391–1398. doi: 10.1128/ec.00242-12
|
[50] | Nadal M, García-Pedrajas MD, Gold SE (2008) Dimorphism in fungal plant pathogens. FEMS Microbiology Letters 284: 127–134. doi: 10.1111/j.1574-6968.2008.01173.x
|
[51] | Liu J, Farmer JD Jr, Lane WS, Friedman J, Weissman I, et al. (1991) Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807–815. doi: 10.1016/0092-8674(91)90124-h
|
[52] | Milan D, Griffith J, Su M, Price ER, McKeon F (1994) The latch region of calcineurin B is involved in both immunosuppressant-immunophilin complex docking and phosphatase activation. Cell 79: 437–447. doi: 10.1016/0092-8674(94)90253-4
|
[53] | Li CH, Cervantes M, Springer DJ, Boekhout T, Ruiz-Vazquez RM, et al. (2011) Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog 7: e1002086. doi: 10.1371/journal.ppat.1002086
|
[54] | Kozubowski L, Lee SC, Heitman J (2009) Signalling pathways in the pathogenesis of Cryptococcus. Cellular Microbiology 11: 370–380. doi: 10.1111/j.1462-5822.2008.01273.x
|
[55] | Chen Y-L, Kozubowski L, Cardenas M, Heitman J (2010) On the roles of calcineurin in fungal growth and pathogenesis. Curr Fungal Infect Rep 4: 244–255. doi: 10.1007/s12281-010-0027-5
|
[56] | Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, et al. (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16: 2576–2589. doi: 10.1093/emboj/16.10.2576
|
[57] | Chen Y-L, Brand A, Morrison EL, Silao FGS, Bigol UG, et al. (2011) Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot Cell 10: 803–819. doi: 10.1128/ec.00310-10
|
[58] | Zhang J, Silao FGS, Bigol UG, Bungay AAC, Nicolas MG, et al. (2012) Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae. PLoS ONE 7: e44192. doi: 10.1371/journal.pone.0044192
|
[59] | Chen Y-L, Konieczka JH, Springer DJ, Bowen SE, Zhang J, et al. (2012) Convergent evolution of calcineurin pathway roles in thermotolerance and virulence in Candida glabrata. G3: Genes, Genomes, Genetics 2: 675–691. doi: 10.1534/g3.112.002279
|
[60] | Reedy JL, Filler SG, Heitman J (2010) Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 47: 107–116. doi: 10.1016/j.fgb.2009.09.002
|
[61] | Campos CBL, Di Benedette JPT, Morais FV, Ovalle R, Nobrega MP (2008) Evidence for the role of calcineurin in morphogenesis and calcium homeostasis during mycelium-to-yeast dimorphism of Paracoccidioides brasiliensis. Eukaryot Cell 7: 1856–1864. doi: 10.1128/ec.00110-08
|
[62] | Steinbach WJ, Cramer RA, Perfect BZ, Asfaw YG, Sauer TC, et al. (2006) Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5: 1091–1103. doi: 10.1128/ec.00139-06
|
[63] | Cardenas ME, Muir RS, Breuder T, Heitman J (1995) Targets of immunophilin-immunosuppressant complexes are distinct highly conserved regions of calcineurin A. EMBO J 14: 2772–2783.
|
[64] | Siekierka JJ, Hung SHY, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341: 755–757. doi: 10.1038/341755a0
|
[65] | Bastidas RJ, Shertz CA, Lee SC, Heitman J, Cardenas ME (2012) Rapamycin exerts antifungal activity in vitro and in vivo against Mucor circinelloides via FKBP12-dependent inhibition of Tor. Eukaryot Cell 11: 270–281. doi: 10.1128/ec.05284-11
|
[66] | Fox DS, Cruz MC, Sia RAL, Ke H, Cox GM, et al. (2001) Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12–FK506 in Cryptococcus neoformans. Mol Microbiol 39: 835–849. doi: 10.1046/j.1365-2958.2001.02295.x
|
[67] | Bahn Y-S, Muhlschlegel FA (2006) CO2 sensing in fungi and beyond. Curr Opin Microbiol 9: 572–578. doi: 10.1016/j.mib.2006.09.003
|
[68] | Roskoski R (1983) Assays of protein kinase. Methods Enzymol 99: 3–6. doi: 10.1016/0076-6879(83)99034-1
|
[69] | Poor F, Parent SA, Morin N, Dahl AM, Ramadan N, et al. (1992) Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from α-factor arrest in yeast. Nature 360: 682–684. doi: 10.1038/360682a0
|
[70] | Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, et al. (2002) Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 21: 546–559. doi: 10.1093/emboj/21.4.546
|
[71] | Prokisch H, Yarden O, Deiminger M, Tropschug M, Barthelmess IB (1997) Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of the apical Ca2+ gradient. Mol Gen Genet 256: 104–114. doi: 10.1007/s004380050551
|
[72] | Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, et al. (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv113. doi: 10.1126/scitranslmed.3004404
|
[73] | Singh N, Aguado JM, Bonatti H, Forrest G, Gupta KL, et al. (2009) Zygomycosis in solid organ transplant recipients: a prospective, matched case-control study to assess risks for disease and outcome. J Infect Dis 200: 1002–1011. doi: 10.1086/605445
|
[74] | Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75: 213–267. doi: 10.1128/mmbr.00045-10
|
[75] | Thakur M, Revankar SG (2011) In vitro interaction of caspofungin and immunosuppressives against agents of mucormycosis. J Antimicrob Chemother 66: 2312–2314. doi: 10.1093/jac/dkr297
|
[76] | Narreddy S, Manavathu E, Chandrasekar PH, Alangaden GJ, Revankar SG (2010) In vitro interaction of posaconazole with calcineurin inhibitors and sirolimus against zygomycetes. J Antimicrob Chemother 65: 701–703. doi: 10.1093/jac/dkq020
|
[77] | Dannaoui E, Schwarz P, Lortholary O (2009) In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antibicrob Agents and Chemother 53: 3549–3551. doi: 10.1128/aac.00184-09
|
[78] | Lewis RE, Ben-Ami R, Best L, Albert N, Walsh TJ, et al. (2013) Tacrolimus enhances the potency of posaconazole against Rhizopus oryzae in vitro and in an experimental models of mucormycosis. J Infect Dis 207: 834–841. doi: 10.1093/infdis/jis767
|
[79] | Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109: S67–S79. doi: 10.1016/s0092-8674(02)00699-2
|
[80] | Harren K, Schumacher J, Tudzynski B (2012) The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. PLoS ONE 7: e41761. doi: 10.1371/journal.pone.0041761
|
[81] | Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, et al. (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6: e1000953. doi: 10.1371/journal.ppat.1000953
|
[82] | Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, et al. (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6: e1000945. doi: 10.1371/journal.ppat.1000945
|
[83] | Hung C-Y, Xue J, Cole GT (2007) Virulence mechanisms of Coccidioides. Ann N Y Acad Sci 1111: 225–235. doi: 10.1196/annals.1406.020
|
[84] | Huppert M, Sun SH, Harrison JL (1982) Morphogenesis throughout saprobic and parasitic cycles of Coccidioides immitis. Mycopathologia 78: 107–122. doi: 10.1007/bf00442634
|
[85] | Molkentin JD, Lu J-R, Antos CL, Markham B, Richardson J, et al. (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228. doi: 10.1016/s0092-8674(00)81573-1
|
[86] | Mansuy IM, Mayford M, Jacob B, Kandel ER, Bach ME (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92: 39–49. doi: 10.1016/s0092-8674(00)80897-1
|
[87] | Ferreira A, Kincaid R, Kosik KS (1993) Calcineurin is associated with the cytoskeleton of cultured neurons and has a role in the acquisition of polarity. Mol Biol Cell 4: 1225–1238. doi: 10.1091/mbc.4.12.1225
|
[88] | Egan JD, Garcia-Pedrajas MD, Andrews DL, Gold SE (2009) Calcineurin is an antagonist to PKA protein phosphorylation required for postmating filamentation and virulence, while PP2A is required for viability in Ustilago maydis. Mol Plant Microbe Interact 22: 1293–1301. doi: 10.1094/mpmi-22-10-1293
|
[89] | Kafadar KA, Cyert MS (2004) Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot Cell 3: 1147–1153. doi: 10.1128/ec.3.5.1147-1153.2004
|
[90] | Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
|
[91] | Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
|
[92] | Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, et al. (2007) Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8: 460. doi: 10.1186/1471-2105-8-460
|
[93] | Davidson RC, Blankenship JR, Kraus PR, de Jesus Berrios M, Hull CM, et al. (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148: 2607–2615.
|
[94] | Gutierrez A, Lopez-Garcia S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84: 442–446. doi: 10.1016/j.mimet.2011.01.002
|
[95] | Nicolas FE, de Haro JP, Torres-Martinez S, Ruiz-Vazquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44: 504–516. doi: 10.1016/j.fgb.2006.09.003
|
[96] | Liu M, Spellberg B, Phan QT, Fu Y, Fu Y, et al. (2010) The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J Clin Invest 120: 1914–1924. doi: 10.1172/jci42164
|