[1] | Beinert H (2000) Iron-sulfur proteins: ancient structures, still full of surprises. J Biol Inorg Chem 5: 2–15. doi: 10.1007/s007750050002
|
[2] | Brzoska K, Meczynska S, Kruszewski M (2006) Iron-sulfur cluster proteins: electron transfer and beyond. Acta Biochim Pol 53: 685–691.
|
[3] | Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277: 653–659. doi: 10.1126/science.277.5326.653
|
[4] | Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231: 494–498. doi: 10.1007/bf00292722
|
[5] | Muhlenhoff U, Lill R (2000) Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta 1459: 370–382. doi: 10.1016/s0005-2728(00)00174-2
|
[6] | Balk J, Lobreaux S (2005) Biogenesis of iron-sulfur proteins in plants. Trends Plant Sci 10: 324–331. doi: 10.1016/j.tplants.2005.05.002
|
[7] | Pilon-Smits EA, Garifullina GF, Abdel-Ghany S, Kato S, Mihara H, et al. (2002) Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism. Plant Physiol 130: 1309–1318. doi: 10.1104/pp.102.010280
|
[8] | Leon S, Touraine B, Briat JF, Lobreaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366: 557–564. doi: 10.1042/bj20020322
|
[9] | Tsaousis AD, Ollagnier de Choudens S, Gentekaki E, Long S, Gaston D, et al. (2012) Evolution of Fe/S cluster biogenesis in the anaerobic parasite Blastocystis. Proc Natl Acad Sci U S A 109: 10426–10431. doi: 10.1073/pnas.1116067109
|
[10] | Adam AC, Bornhovd C, Prokisch H, Neupert W, Hell K (2006) The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO J 25: 174–183. doi: 10.1038/sj.emboj.7600905
|
[11] | Wiedemann N, Urzica E, Guiard B, Muller H, Lohaus C, et al. (2006) Essential role of Isd11 in mitochondrial iron-sulfur cluster synthesis on Isu scaffold proteins. EMBO J 25: 184–195. doi: 10.1038/sj.emboj.7600906
|
[12] | Paris Z, Changmai P, Rubio MA, Zikova A, Stuart KD, et al. (2010) The Fe/S cluster assembly protein Isd11 is essential for tRNA thiolation in Trypanosoma brucei. J Biol Chem 285: 22394–22402. doi: 10.1074/jbc.m109.083774
|
[13] | Richards TA, van der Giezen M (2006) Evolution of the Isd11-IscS complex reveals a single alpha-proteobacterial endosymbiosis for all eukaryotes. Mol Biol Evol 23: 1341–1344. doi: 10.1093/molbev/msl001
|
[14] | Pandey A, Yoon H, Lyver ER, Dancis A, Pain D (2011) Isd11p protein activates the mitochondrial cysteine desulfurase Nfs1p protein. J Biol Chem 286: 38242–38252. doi: 10.1074/jbc.m111.288522
|
[15] | Layer G, Gaddam SA, Ayala-Castro CN, Ollagnier-de Choudens S, Lascoux D, et al. (2007) SufE transfers sulfur from SufS to SufB for iron-sulfur cluster assembly. J Biol Chem 282: 13342–13350. doi: 10.1074/jbc.m608555200
|
[16] | Outten FW, Wood MJ, Munoz FM, Storz G (2003) The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem 278: 45713–45719. doi: 10.1074/jbc.m308004200
|
[17] | Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F (2003) Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem 278: 38352–38359. doi: 10.1074/jbc.m305953200
|
[18] | Xu XM, Moller SG (2006) AtSufE is an essential activator of plastidic and mitochondrial desulfurases in Arabidopsis. EMBO J 25: 900–909. doi: 10.1038/sj.emboj.7600968
|
[19] | Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18: 418–426. doi: 10.1093/oxfordjournals.molbev.a003818
|
[20] | Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, et al. (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2: 203–216. doi: 10.1038/nrmicro843
|
[21] | Cicchillo RM, Lee KH, Baleanu-Gogonea C, Nesbitt NM, Krebs C, et al. (2004) Escherichia coli lipoyl synthase binds two distinct [4Fe-4S] clusters per polypeptide. Biochemistry 43: 11770–11781. doi: 10.1021/bi0488505
|
[22] | Lee M, Grawert T, Quitterer F, Rohdich F, Eppinger J, et al. (2010) Biosynthesis of isoprenoids: crystal structure of the [4Fe-4S] cluster protein IspG. J Mol Biol 404: 600–610. doi: 10.1016/j.jmb.2010.09.050
|
[23] | Rekittke I, Wiesner J, Rohrich R, Demmer U, Warkentin E, et al. (2008) Structure of (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase, the terminal enzyme of the non-mevalonate pathway. J Am Chem Soc 130: 17206–17207. doi: 10.1021/ja806668q
|
[24] | Zepeck F, Grawert T, Kaiser J, Schramek N, Eisenreich W, et al. (2005) Biosynthesis of isoprenoids. purification and properties of IspG protein from Escherichia coli. J Org Chem 70: 9168–9174. doi: 10.1021/jo0510787
|
[25] | Pierrel F, Bjork GR, Fontecave M, Atta M (2002) Enzymatic modification of tRNAs: MiaB is an iron-sulfur protein. J Biol Chem 277: 13367–13370. doi: 10.1074/jbc.c100609200
|
[26] | Kimata-Ariga Y, Kurisu G, Kusunoki M, Aoki S, Sato D, et al. (2007) Cloning and characterization of ferredoxin and ferredoxin-NADP+ reductase from human malaria parasite. J Biochem 141: 421–428. doi: 10.1093/jb/mvm046
|
[27] | Rohrich RC, Englert N, Troschke K, Reichenberg A, Hintz M, et al. (2005) Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett 579: 6433–6438. doi: 10.1016/j.febslet.2005.10.037
|
[28] | Yeh E, DeRisi JL (2011) Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol 9: e1001138. doi: 10.1371/journal.pbio.1001138
|
[29] | Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, et al. (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285: 1573–1576. doi: 10.1126/science.285.5433.1573
|
[30] | Kumar B, Chaubey S, Shah P, Tanveer A, Charan M, et al. (2011) Interaction between sulphur mobilisation proteins SufB and SufC: evidence for an iron-sulphur cluster biogenesis pathway in the apicoplast of Plasmodium falciparum. Int J Parasitol 41: 991–999. doi: 10.1016/j.ijpara.2011.05.006
|
[31] | Wilson RJ (2005) Parasite plastids: approaching the endgame. Biol Rev Camb Philos Soc 80: 129–153. doi: 10.1017/s1464793104006591
|
[32] | Seeber F (2002) Biogenesis of iron-sulphur clusters in amitochondriate and apicomplexan protists. Int J Parasitol 32: 1207–1217. doi: 10.1016/s0020-7519(02)00022-x
|
[33] | van Dooren GG, Stimmler LM, McFadden GI (2006) Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30: 596–630. doi: 10.1111/j.1574-6976.2006.00027.x
|
[34] | Ellis KE, Clough B, Saldanha JW, Wilson RJ (2001) Nifs and Sufs in malaria. Mol Microbiol 41: 973–981. doi: 10.1046/j.1365-2958.2001.02588.x
|
[35] | Outten FW, Djaman O, Storz G (2004) A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol 52: 861–872. doi: 10.1111/j.1365-2958.2004.04025.x
|
[36] | Seeber F, Soldati-Favre D (2010) Metabolic pathways in the apicoplast of apicomplexa. Int Rev Cell Mol Biol 281: 161–228. doi: 10.1016/s1937-6448(10)81005-6
|
[37] | Mather MW, Henry KW, Vaidya AB (2007) Mitochondrial drug targets in apicomplexan parasites. Curr Drug Targets 8: 49–60. doi: 10.2174/138945007779315632
|
[38] | Zuegge J, Ralph S, Schmuker M, McFadden GI, Schneider G (2001) Deciphering apicoplast targeting signals–feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280: 19–26. doi: 10.1016/s0378-1119(01)00776-4
|
[39] | Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, et al. (2003) Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299: 705–708. doi: 10.1126/science.1078599
|
[40] | Bender A, van Dooren GG, Ralph SA, McFadden GI, Schneider G (2003) Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem Parasitol 132: 59–66. doi: 10.1016/j.molbiopara.2003.07.001
|
[41] | Nakai Y, Nakai M, Hayashi H, Kagamiyama H (2001) Nuclear localization of yeast Nfs1p is required for cell survival. J Biol Chem 276: 8314–8320. doi: 10.1074/jbc.m007878200
|
[42] | Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, et al. (2006) Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods 3: 615–621. doi: 10.1038/nmeth904
|
[43] | Spalding MD, Allary M, Gallagher JR, Prigge ST (2010) Validation of a modified method for Bxb1 mycobacteriophage integrase-mediated recombination in Plasmodium falciparum by localization of the H-protein of the glycine cleavage complex to the mitochondrion. Mol Biochem Parasitol 172: 156–160. doi: 10.1016/j.molbiopara.2010.04.005
|
[44] | van Dooren GG, Su V, D'Ombrain MC, McFadden GI (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277: 23612–23619. doi: 10.1074/jbc.m201748200
|
[45] | Balabaskaran Nina P, Morrisey JM, Ganesan SM, Ke H, Pershing AM, et al. (2011) ATP synthase complex of Plasmodium falciparum: dimeric assembly in mitochondrial membranes and resistance to genetic disruption. J Biol Chem 286: 41312–41322. doi: 10.1074/jbc.m111.290973
|
[46] | Saini A, Mapolelo DT, Chahal HK, Johnson MK, Outten FW (2010) SufD and SufC ATPase activity are required for iron acquisition during in vivo Fe-S cluster formation on SufB. Biochemistry 49: 9402–9412. doi: 10.1021/bi1011546
|
[47] | Dahl EL, Rosenthal PJ (2007) Multiple antibiotics exert delayed effects against the Plasmodium falciparum apicoplast. Antimicrob Agents Chemother 51: 3485–3490. doi: 10.1128/aac.00527-07
|
[48] | Vaughan AM, O'Neill MT, Tarun AS, Camargo N, Phuong TM, et al. (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11: 506–520. doi: 10.1111/j.1462-5822.2008.01270.x
|
[49] | Yu M, Kumar TR, Nkrumah LJ, Coppi A, Retzlaff S, et al. (2008) The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 4: 567–578. doi: 10.1016/j.chom.2008.11.001
|
[50] | Prigge ST, He X, Gerena L, Waters NC, Reynolds KA (2003) The initiating steps of a type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. Biochemistry 42: 1160–1169. doi: 10.1021/bi026847k
|
[51] | Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN, et al. (2005) The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol 55: 39–53. doi: 10.1111/j.1365-2958.2004.04407.x
|
[52] | Pei Y, Tarun AS, Vaughan AM, Herman RW, Soliman JM, et al. (2010) Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection. Mol Microbiol 75: 957–971. doi: 10.1111/j.1365-2958.2009.07034.x
|
[53] | Allary M, Lu JZ, Zhu L, Prigge ST (2007) Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol 63: 1331–1344. doi: 10.1111/j.1365-2958.2007.05592.x
|
[54] | Cicchillo RM, Booker SJ (2005) Mechanistic investigations of lipoic acid biosynthesis in Escherichia coli: both sulfur atoms in lipoic acid are contributed by the same lipoyl synthase polypeptide. J Am Chem Soc 127: 2860–2861. doi: 10.1021/ja042428u
|
[55] | Ayala-Castro C, Saini A, Outten FW (2008) Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev 72: 110–125 table of contents. doi: 10.1128/mmbr.00034-07
|
[56] | McFadden GI (2011) The apicoplast. Protoplasma 248: 641–650. doi: 10.1007/s00709-010-0250-5
|
[57] | Gallagher JR, Prigge ST (2010) Plasmodium falciparum acyl carrier protein crystal structures in disulfide-linked and reduced states and their prevalence during blood stage growth. Proteins 78: 575–588. doi: 10.1002/prot.22582
|
[58] | Dellibovi-Ragheb TA, Gisselberg JE, Prigge ST (2013) Parasites FeS up: iron-sulfur cluster biogenesis in eukaryotic pathogens. PLoS Pathog 9: e1003227. doi: 10.1371/journal.ppat.1003227
|
[59] | Sato S, Rangachari K, Wilson RJ (2003) Targeting GFP to the malarial mitochondrion. Mol Biochem Parasitol 130: 155–158. doi: 10.1016/s0166-6851(03)00166-x
|
[60] | Mather MW, Darrouzet E, Valkova-Valchanova M, Cooley JW, McIntosh MT, et al. (2005) Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system. J Biol Chem 280: 27458–27465. doi: 10.1074/jbc.m502319200
|
[61] | Lamichhane TN, Blewett NH, Maraia RJ (2011) Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases. Rna-a Publication of the Rna Society 17: 1846–1857. doi: 10.1261/rna.2628611
|
[62] | Persson BC, Esberg B, Olafsson O, Bjork GR (1994) Synthesis and Function of Isopentenyl Adenosine Derivatives in Transfer-Rna. Biochimie 76: 1152–1160. doi: 10.1016/0300-9084(94)90044-2
|
[63] | Esberg B, Leung HCE, Tsui HCT, Bjork GR, Winkler ME (1999) Identification of the miaB gene, involved in methylthiolation of isopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. Journal of Bacteriology 181: 7256–7265.
|
[64] | Hernandez HL, Pierrel F, Elleingand E, Garcia-Serres R, Huynh BH, et al. (2007) MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46: 5140–5147. doi: 10.1021/bi7000449
|
[65] | Seeber F, Aliverti A, Zanetti G (2005) The plant-type ferredoxin-NADP(+) reductase/ferrodoxin redox system as a possible drug target against apicomplexan human parasites. Current Pharmaceutical Design 11: 3159–3172. doi: 10.2174/1381612054864957
|
[66] | Vollmer M, Thomsen N, Wiek S, Seeber F (2001) Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP(+) reductase and ferredoxin. Journal of Biological Chemistry 276: 5483–5490. doi: 10.1074/jbc.m009452200
|
[67] | Krapp AR, Rodriguez RE, Poli HO, Paladini DH, Palatnik JF, et al. (2002) The flavoenzyme ferredoxin (flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli. Journal of Bacteriology 184: 1474–1480. doi: 10.1128/jb.184.5.1474-1480.2002
|
[68] | Gallagher JR, Matthews KA, Prigge ST (2011) Plasmodium falciparum apicoplast transit peptides are unstructured in vitro and during apicoplast import. Traffic 12: 1124–1138. doi: 10.1111/j.1600-0854.2011.01232.x
|
[69] | Trager W, Jensen JB (1997) Continuous culture of Plasmodium falciparum: its impact on malaria research. Int J Parasitol 27: 989–1006. doi: 10.1016/s0020-7519(97)00080-5
|
[70] | Delli-Bovi TA, Spalding MD, Prigge ST (2010) Overexpression of biotin synthase and biotin ligase is required for efficient generation of sulfur-35 labeled biotin in E. coli. BMC Biotechnol 10: 73. doi: 10.1186/1472-6750-10-73
|
[71] | Muench SP, Rafferty JB, McLeod R, Rice DW, Prigge ST (2003) Expression, purification and crystallization of the Plasmodium falciparum enoyl reductase. Acta Crystallogr D Biol Crystallogr 59: 1246–1248. doi: 10.1107/s0907444903008813
|