[1] | Atkinson S, Williams P (2009) Quorum sensing and social networking in the microbial world. J R Soc Interface 6: 959–978. doi: 10.1098/rsif.2009.0203
|
[2] | Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319–346. doi: 10.1146/annurev.cellbio.21.012704.131001
|
[3] | Hanzelka BL, Parsek MR, Val DL, Dunlap PV, Cronan JE Jr, et al. (1999) Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J Bacteriol 181: 5766–5770.
|
[4] | Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, et al. (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450: 883–886. doi: 10.1038/nature06284
|
[5] | Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, et al. (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545–549. doi: 10.1038/415545a
|
[6] | Henke JM, Bassler BL (2004) Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol 186: 6902–6914. doi: 10.1128/jb.186.20.6902-6914.2004
|
[7] | Freeman JA, Bassler BL (1999) A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31: 665–677. doi: 10.1046/j.1365-2958.1999.01208.x
|
[8] | Freeman JA, Bassler BL (1999) Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 181: 899–906.
|
[9] | Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, et al. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69–82. doi: 10.1016/j.cell.2004.06.009
|
[10] | Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol Microbiol 36: 940–954. doi: 10.1046/j.1365-2958.2000.01913.x
|
[11] | Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12: 182–191. doi: 10.1016/j.mib.2009.01.005
|
[12] | Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, et al. (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91: 197–201. doi: 10.1073/pnas.91.1.197
|
[13] | Pearson JP, Passador L, Iglewski BH, Greenberg EP (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92: 1490–1494. doi: 10.1073/pnas.92.5.1490
|
[14] | Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, et al. (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17: 333–343. doi: 10.1111/j.1365-2958.1995.mmi_17020333.x
|
[15] | Deziel E, Lepine F, Milot S, He J, Mindrinos MN, et al. (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci U S A 101: 1339–1344. doi: 10.1073/pnas.0307694100
|
[16] | Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184: 6472–6480. doi: 10.1128/jb.184.23.6472-6480.2002
|
[17] | McGrath S, Wade DS, Pesci EC (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230: 27–34. doi: 10.1016/s0378-1097(03)00849-8
|
[18] | Njoroge J, Sperandio V (2009) Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1: 201–210. doi: 10.1002/emmm.200900032
|
[19] | Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6: 17–27. doi: 10.1038/nrmicro1818
|
[20] | Manefield M, Welch M, Givskov M, Salmond GP, Kjelleberg S (2001) Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett 205: 131–138. doi: 10.1111/j.1574-6968.2001.tb10936.x
|
[21] | Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134: 461–473. doi: 10.1016/j.cell.2008.06.023
|
[22] | Wermuth CG (2006) Selective optimization of side activities: the SOSA approach. Drug Discov Today 11: 160–164. doi: 10.1016/s1359-6446(05)03686-x
|
[23] | Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, et al. (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248: 446–458. doi: 10.1007/bf02191645
|
[24] | Otto M, Süssmuth R, Jung G, G?tz F (1998) Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett 424: 89–94. doi: 10.1016/s0014-5793(98)00145-8
|
[25] | Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276: 2027–2030. doi: 10.1126/science.276.5321.2027
|
[26] | Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25: 1389–1403. doi: 10.1016/j.peptides.2003.11.026
|
[27] | Biswas L, Biswas R, Schlag M, Bertram R, G?tz F (2009) Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol 75: 6910–6912. doi: 10.1128/aem.01211-09
|
[28] | Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, et al. (2006) Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas. J Bacteriol 188: 8079–8086. doi: 10.1128/jb.00858-06
|
[29] | Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GP (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36: 539–556. doi: 10.1046/j.1365-2958.2000.01872.x
|
[30] | Anetzberger C, Pirch T, Jung K (2009) Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol Microbiol 73: 267–277. doi: 10.1111/j.1365-2958.2009.06768.x
|
[31] | Martin PA, Gundersen-Rindal D, Blackburn M, Buyer J (2007) Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int J Syst Evol Microbiol 57: 993–999. doi: 10.1099/ijs.0.64611-0
|
[32] | Castric PA (1975) Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 21: 613–618. doi: 10.1139/m75-088
|
[33] | Hassan HM, Fridovich I (1980) Mechanism of the antibiotic action pyocyanine. J Bacteriol 141: 156–163.
|
[34] | Saising J, Dube L, Ziebandt AK, Voravuthikunchai SP, Nega M, et al. (2012) Activity of Gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 56: 5804–10. doi: 10.1128/aac.01296-12
|
[35] | Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, et al. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22: 3803–3815. doi: 10.1093/emboj/cdg366
|
[36] | Timmen M, Bassler BL, Jung K (2006) AI-1 influences the kinase activity but not the phosphatase activity of LuxN of Vibrio harveyi. J Biol Chem 281: 24398–24404. doi: 10.1074/jbc.m604108200
|
[37] | Lamers RP, Muthukrishnan G, Castoe TA, Tafur S, Cole AM, et al. (2012) Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol Biol 12: 171. doi: 10.1186/1471-2148-12-171
|
[38] | Bannoehr J, Ben Zakour NL, Waller AS, Guardabassi L, Thoday KL, et al. (2007) Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol 189: 8685–8692. doi: 10.1128/jb.01150-07
|
[39] | Ben Zakour NL, Beatson SA, van den Broek AH, Thoday KL, Fitzgerald JR (2012) Comparative Genomics of the Staphylococcus intermedius Group of Animal Pathogens. Front Cell Infect Microbiol 2: 44. doi: 10.3389/fcimb.2012.00044
|
[40] | Varaldo PE, Kilpper-B?lz R, Biavasco F, Satta G, Schleifer KH (1988) Staphylococcus delphini sp. nov., a coagulase-positive species isolated from dolphins. Int J Syst Bacteriol 38: 436–439. doi: 10.1099/00207713-38-4-436
|
[41] | Hájek V (1976) Staphylococcus intermedius, a new species isolated from animals. Int J Syst Bacteriol 26: 401–408. doi: 10.1099/00207713-26-4-401
|
[42] | van Duijkeren E, Kamphuis M, van der Mije IC, Laarhoven LM, Duim B, et al. (2011) Transmission of methicillin-resistant Staphylococcus pseudintermedius between infected dogs and cats and contact pets, humans and the environment in households and veterinary clinics. Vet Microbiol 150: 338–343. doi: 10.1016/j.vetmic.2011.02.012
|
[43] | Foster G, Ross HM, Hutson RA, Collins MD (1997) Staphylococcus lutrae sp. nov., a new coagulase-positive species isolated from otters. Int J Syst Bacteriol 47: 724–726. doi: 10.1099/00207713-47-3-724
|
[44] | Bes M, Guerin-Faublee V, Freney J, Etienne J (2002) Isolation of Staphylococcus schleiferi subspecies coagulans from two cases of canine pyoderma. Vet Rec 150: 487–488. doi: 10.1136/vr.150.15.487
|
[45] | G?tz F, Bannerman T, Schleifer KH (2006) The Genera Staphylococcus and Macrococcus. In: Dworkin M, editor. Procaryotes. New York: Springer. pp. 5–75.
|
[46] | Takahashi T, Satoh I, Kikuchi N (1999) Phylogenetic relationships of 38 taxa of the genus Staphylococcus based on 16S rRNA gene sequence analysis. Int J Syst Bacteriol 49 Pt 2: 725–728. doi: 10.1099/00207713-49-2-725
|
[47] | Sasaki T, Tsubakishita S, Tanaka Y, Sakusabe A, Ohtsuka M, et al. (2010) Multiplex-PCR method for species identification of coagulase-positive staphylococci. J Clin Microbiol 48: 765–769. doi: 10.1128/jcm.01232-09
|
[48] | Albrecht T, Raue S, Rosenstein R, Nieselt K, G?tz F (2012) Phylogeny of the staphylococcal major autolysin and its use in genus and species typing. J Bacteriol 194: 2630–2636. doi: 10.1128/jb.06609-11
|
[49] | Anetzberger C, Reiger M, Fekete A, Schell U, Stambrau N, et al. (2012) Autoinducers act as biological timers in Vibrio harveyi. PLoS One 7: e48310. doi: 10.1371/journal.pone.0048310
|
[50] | Jung K, Odenbach T, Timmen M (2007) The quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi contains a periplasmically located N terminus. J Bacteriol 189: 2945–2948. doi: 10.1128/jb.01723-06
|
[51] | Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75: 567–572. doi: 10.1128/aem.00632-08
|
[52] | Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8: 15–25. doi: 10.1038/nrmicro2259
|
[53] | Rampioni G, Schuster M, Greenberg EP, Bertani I, Grasso M, et al. (2007) RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol 66: 1557–1565. doi: 10.1111/j.1365-2958.2007.06029.x
|
[54] | Dandekar AA, Chugani S, Greenberg EP (2012) Bacterial quorum sensing and metabolic incentives to cooperate. Science 338: 264–266. doi: 10.1126/science.1227289
|
[55] | Heurlier K, Denervaud V, Haas D (2006) Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 296: 93–102. doi: 10.1016/j.ijmm.2006.01.043
|
[56] | van Kessel JC, Rutherford ST, Shao Y, Utria AF, Bassler BL (2013) Individual and Combined Roles of the Master Regulators AphA and LuxR in Control of the Vibrio harveyi Quorum-Sensing Regulon. J Bacteriol 195: 436–443. doi: 10.1128/jb.01998-12
|
[57] | Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PO, et al. (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52: 3648–3663. doi: 10.1128/aac.01230-07
|
[58] | Cox CD (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infect Immun 52: 263–270.
|
[59] | Neiditch MB, Federle MJ, Miller ST, Bassler BL, Hughson FM (2005) Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol Cell 18: 507–518. doi: 10.1016/j.molcel.2005.04.020
|