全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Absence of Siglec-H in MCMV Infection Elevates Interferon Alpha Production but Does Not Enhance Viral Clearance

DOI: 10.1371/journal.ppat.1003648

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plasmacytoid dendritic cells (pDCs) express the I-type lectin receptor Siglec-H and produce interferon α (IFNα), a critical anti-viral cytokine during the acute phase of murine cytomegalovirus (MCMV) infection. The ligands and biological functions of Siglec-H still remain incompletely defined in vivo. Thus, we generated a novel bacterial artificial chromosome (BAC)-transgenic “pDCre” mouse which expresses Cre recombinase under the control of the Siglec-H promoter. By crossing these mice with a Rosa26 reporter strain, a representative fraction of Siglec-H+ pDCs is terminally labeled with red fluorescent protein (RFP). Interestingly, systemic MCMV infection of these mice causes the downregulation of Siglec-H surface expression. This decline occurs in a TLR9- and MyD88-dependent manner. To elucidate the functional role of Siglec-H during MCMV infection, we utilized a novel Siglec-H deficient mouse strain. In the absence of Siglec-H, the low infection rate of pDCs with MCMV remained unchanged, and pDC activation was still intact. Strikingly, Siglec-H deficiency induced a significant increase in serum IFNα levels following systemic MCMV infection. Although Siglec-H modulates anti-viral IFNα production, the control of viral replication was unchanged in vivo. The novel mouse models will be valuable to shed further light on pDC biology in future studies.

References

[1]  Merad M, Manz MG (2009) Dendritic cell homeostasis. Blood 113: 3418–3427. doi: 10.1182/blood-2008-12-180646
[2]  Lewis KL, Reizis B (2012) Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb Perspect Biol 4: a007401. doi: 10.1101/cshperspect.a007401
[3]  Hadeiba H, Lahl K, Edalati A, Oderup C, Habtezion A, et al. (2012) Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36: 438–450. doi: 10.1016/j.immuni.2012.01.017
[4]  Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7: 610–621. doi: 10.1038/nri2132
[5]  Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, et al. (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7: 652–662. doi: 10.1038/ni1333
[6]  Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21: 685–711. doi: 10.1146/annurev.immunol.21.120601.141040
[7]  Goubier A, Dubois B, Gheit H, Joubert G, Villard-Truc F, et al. (2008) Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29: 464–475. doi: 10.1016/j.immuni.2008.06.017
[8]  de Heer HJ, Hammad H, Soullie T, Hijdra D, Vos N, et al. (2004) Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 200: 89–98. doi: 10.1084/jem.20040035
[9]  Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8: 594–606. doi: 10.1038/nri2358
[10]  Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23: 275–306. doi: 10.1146/annurev.immunol.23.021704.115633
[11]  Krug A, French AR, Barchet W, Fischer JA, Dzionek A, et al. (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21: 107–119. doi: 10.1016/j.immuni.2004.06.007
[12]  Dalod M, Hamilton T, Salomon R, Salazar-Mather TP, Henry SC, et al. (2003) Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta. J Exp Med 197: 885–898. doi: 10.1084/jem.20021522
[13]  Swiecki M, Gilfillan S, Vermi W, Wang Y, Colonna M (2010) Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity 33: 955–966. doi: 10.1016/j.immuni.2010.11.020
[14]  Zucchini N, Bessou G, Robbins SH, Chasson L, Raper A, et al. (2008) Individual plasmacytoid dendritic cells are major contributors to the production of multiple innate cytokines in an organ-specific manner during viral infection. Int Immunol 20: 45–56. doi: 10.1093/intimm/dxm119
[15]  Paulson JC, Macauley MS, Kawasaki N (2012) Siglecs as sensors of self in innate and adaptive immune responses. Ann N Y Acad Sci 1253: 37–48. doi: 10.1111/j.1749-6632.2011.06362.x
[16]  Blasius AL, Colonna M (2006) Sampling and signaling in plasmacytoid dendritic cells: the potential roles of Siglec-H. Trends Immunol 27: 255–260. doi: 10.1016/j.it.2006.04.005
[17]  Blasius A, Vermi W, Krug A, Facchetti F, Cella M, et al. (2004) A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood 103: 4201–4206. doi: 10.1182/blood-2003-09-3108
[18]  Zhang J, Raper A, Sugita N, Hingorani R, Salio M, et al. (2006) Characterization of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 107: 3600–3608. doi: 10.1182/blood-2005-09-3842
[19]  Sjolin H, Robbins SH, Bessou G, Hidmark A, Tomasello E, et al. (2006) DAP12 signaling regulates plasmacytoid dendritic cell homeostasis and down-modulates their function during viral infection. J Immunol 177: 2908–2916. doi: 10.4049/jimmunol.177.5.2908
[20]  Takagi H, Fukaya T, Eizumi K, Sato Y, Sato K, et al. (2011) Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 35: 958–971. doi: 10.1016/j.immuni.2011.10.014
[21]  Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, et al. (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2: 1144–1150. doi: 10.1038/ni736
[22]  Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37: 43–53. doi: 10.1002/eji.200636745
[23]  Schwab N, Zozulya AL, Kieseier BC, Toyka KV, Wiendl H (2010) An imbalance of two functionally and phenotypically different subsets of plasmacytoid dendritic cells characterizes the dysfunctional immune regulation in multiple sclerosis. J Immunol 184: 5368–5374. doi: 10.4049/jimmunol.0903662
[24]  Schlitzer A, Loschko J, Mair K, Vogelmann R, Henkel L, et al. (2011) Identification of CCR9- murine plasmacytoid DC precursors with plasticity to differentiate into conventional DCs. Blood 117: 6562–6570. doi: 10.1182/blood-2010-12-326678
[25]  Pelayo R, Hirose J, Huang J, Garrett KP, Delogu A, et al. (2005) Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood 105: 4407–4415. doi: 10.1182/blood-2004-07-2529
[26]  Kamogawa-Schifter Y, Ohkawa J, Namiki S, Arai N, Arai K, et al. (2005) Ly49Q defines 2 pDC subsets in mice. Blood 105: 2787–2792. doi: 10.1182/blood-2004-09-3388
[27]  Bjorck P, Leong HX, Engleman EG (2011) Plasmacytoid dendritic cell dichotomy: identification of IFN-alpha producing cells as a phenotypically and functionally distinct subset. J Immunol 186: 1477–1485. doi: 10.4049/jimmunol.1000454
[28]  Naik SH, Sathe P, Park HY, Metcalf D, Proietto AI, et al. (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 8: 1217–1226. doi: 10.1038/ni1522
[29]  Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, et al. (2007) Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 8: 1207–1216. doi: 10.1038/ni1518
[30]  Bozza S, Bistoni F, Gaziano R, Pitzurra L, Zelante T, et al. (2006) Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood 108: 3387–3396. doi: 10.1182/blood-2006-03-009266
[31]  Orr SL, Le D, Long JM, Sobieszczuk P, Ma B, et al. (2013) A phenotype survey of 36 mutant mouse strains with gene-targeted defects in glycosyltransferases or glycan-binding proteins. Glycobiology 23: 363–380. doi: 10.1093/glycob/cws150
[32]  Mitrovic M, Arapovic J, Jordan S, Fodil-Cornu N, Ebert S, et al. (2012) The NK cell response to mouse cytomegalovirus infection affects the level and kinetics of the early CD8(+) T-cell response. J Virol 86: 2165–2175. doi: 10.1128/jvi.06042-11
[33]  Heng TS, Painter MW (2008) Immunological Genome Project C (2008) The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol 9: 1091–1094. doi: 10.1038/ni1008-1091
[34]  Satpathy AT, Kc W, Albring JC, Edelson BT, Kretzer NM, et al. (2012) Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 209: 1135–1152. doi: 10.1084/jem.20120030
[35]  Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91: 661–672. doi: 10.1016/s0092-8674(00)80453-5
[36]  Gapin L, Matsuda JL, Surh CD, Kronenberg M (2001) NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2: 971–978. doi: 10.1038/ni710
[37]  Egawa T, Eberl G, Taniuchi I, Benlagha K, Geissmann F, et al. (2005) Genetic evidence supporting selection of the Valpha14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22: 705–716. doi: 10.1016/j.immuni.2005.03.011
[38]  Bezbradica JS, Hill T, Stanic AK, Van Kaer L, Joyce S (2005) Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc Natl Acad Sci U S A 102: 5114–5119. doi: 10.1073/pnas.0408449102
[39]  Sparwasser T, Gong S, Li JY, Eberl G (2004) General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 38: 39–50. doi: 10.1002/gene.10249
[40]  Cisse B, Caton ML, Lehner M, Maeda T, Scheu S, et al. (2008) Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135: 37–48. doi: 10.1016/j.cell.2008.09.016
[41]  Schlitzer A, Heiseke AF, Einwachter H, Reindl W, Schiemann M, et al. (2012) Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor. Blood 119: 6063–6071. doi: 10.1182/blood-2012-03-418400
[42]  Onai N, Kurabayashi K, Hosoi-Amaike M, Toyama-Sorimachi N, Matsushima K, et al. (2013) A Clonogenic Progenitor with Prominent Plasmacytoid Dendritic Cell Developmental Potential. Immunity 38: 943–957. doi: 10.1016/j.immuni.2013.04.006
[43]  Heintz N (2001) BAC to the future: the use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2: 861–870. doi: 10.1038/35104049
[44]  Onder L, Narang P, Scandella E, Chai Q, Iolyeva M, et al. (2012) IL-7-producing stromal cells are critical for lymph node remodeling. Blood 120: 4675–4683. doi: 10.1182/blood-2012-03-416859
[45]  Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, et al. (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12: 1071–1077. doi: 10.1038/ni.2133
[46]  Dreux M, Garaigorta U, Boyd B, Decembre E, Chung J, et al. (2012) Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12: 558–570. doi: 10.1016/j.chom.2012.08.010
[47]  Megjugorac NJ, Jacobs ES, Izaguirre AG, George TC, Gupta G, et al. (2007) Image-based study of interferongenic interactions between plasmacytoid dendritic cells and HSV-infected monocyte-derived dendritic cells. Immunol Invest 36: 739–761. doi: 10.1080/08820130701715845
[48]  Blasius AL, Cella M, Maldonado J, Takai T, Colonna M (2006) Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107: 2474–2476. doi: 10.1182/blood-2005-09-3746
[49]  Biron CA (2001) Interferons alpha and beta as immune regulators–a new look. Immunity 14: 661–664. doi: 10.1016/s1074-7613(01)00154-6
[50]  Le Bon A, Tough DF (2002) Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14: 432–436. doi: 10.1016/s0952-7915(02)00354-0
[51]  Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202: 8–32. doi: 10.1111/j.0105-2896.2004.00204.x
[52]  Wilson EB, Yamada DH, Elsaesser H, Herskovitz J, Deng J, et al. (2013) Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 340: 202–207. doi: 10.1126/science.1235208
[53]  Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, et al. (2013) Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340: 207–211. doi: 10.1126/science.1235214
[54]  Yang XW, Model P, Heintz N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15: 859–865. doi: 10.1038/nbt0997-859
[55]  Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73: 7056–7060.
[56]  Mathys S, Schroeder T, Ellwart J, Koszinowski UH, Messerle M, et al. (2003) Dendritic cells under influence of mouse cytomegalovirus have a physiologic dual role: to initiate and to restrict T cell activation. J Infect Dis 187: 988–999. doi: 10.1086/368094
[57]  Brune W, Hengel H, Koszinowski UH (2001) A mouse model for cytomegalovirus infection. Curr Protoc Immunol Chapter 19: Unit 19 17. doi: 10.1002/0471142735.im1907s43
[58]  Naik SH, O'Keeffe M, Proietto A, Shortman HH, Wu L (2010) CD8+, CD8?, and plasmacytoid dendritic cell generation in vitro using flt3 ligand. Methods Mol Biol 595: 167–176. doi: 10.1007/978-1-60761-421-0_10
[59]  Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, et al. (1994) Functional role of type I and type II interferons in antiviral defense. Science 264: 1918–1921. doi: 10.1126/science.8009221

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133