The broadly-neutralizing anti-HIV antibody 4E10 recognizes an epitope in the membrane-proximal external region of the HIV envelope protein gp41. Previous attempts to elicit 4E10 by vaccination with envelope-derived or reverse-engineered immunogens have failed. It was presumed that the ontogeny of 4E10-equivalent responses was blocked by inherent autoreactivity and exceptional polyreactivity. We generated 4E10 heavy-chain knock-in mice, which displayed significant B cell dysregulation, consistent with recognition of autoantigen/s by 4E10 and the presumption that tolerance mechanisms may hinder the elicitation of 4E10 or 4E10-equivalent responses. Previously proposed candidate 4E10 autoantigens include the mitochondrial lipid cardiolipin and a nuclear splicing factor, 3B3. However, using carefully-controlled assays, 4E10 bound only weakly to cardiolipin-containing liposomes, but also bound negatively-charged, non-cardiolipin-containing liposomes comparably poorly. 4E10/liposome binding was predominantly mediated by electrostatic interactions rather than presumed hydrophobic interactions. The crystal structure of 4E10 free of bound ligands showed a dramatic restructuring of the combining site, occluding the HIV epitope binding site and revealing profound flexibility, but creating an electropositive pocket consistent with non-specific binding of phospholipid headgroups. These results strongly suggested that antigens other than cardiolipin mediate 4E10 autoreactivity. Using a synthetic peptide library spanning the human proteome, we determined that 4E10 displays limited and focused, but unexceptional, polyspecificity. We also identified a novel autoepitope shared by three ER-resident inositol trisphosphate receptors, validated through binding studies and immunohistochemistry. Tissue staining with 4E10 demonstrated reactivity consistent with the type 1 inositol trisphosphate receptor as the most likely candidate autoantigen, but is inconsistent with splicing factor 3B3. These results demonstrate that 4E10 recognition of liposomes competes with MPER recognition and that HIV antigen and autoepitope recognition may be distinct enough to permit eliciting 4E10-like antibodies, evading autoimmunity through directed engineering. However, 4E10 combining site flexibility, exceptional for a highly-matured antibody, may preclude eliciting 4E10 by conventional immunization strategies.
References
[1]
Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280: 1884–1888. doi: 10.1126/science.280.5371.1884
[2]
Montefiori D, Sattentau Q, Flores J, Esparza J, Mascola J (2007) Antibody-based HIV-1 vaccines: recent developments and future directions. PLoS Med 4: e348. doi: 10.1371/journal.pmed.0040348
[3]
Schief WR, Ban YE, Stamatatos L (2009) Challenges for structure-based HIV vaccine design. Curr Opin HIV AIDS 4: 431–440. doi: 10.1097/coh.0b013e32832e6184
[4]
Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, et al. (2001) Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75: 10892–10905. doi: 10.1128/jvi.75.22.10892-10905.2001
[5]
D'Souza MP, Geyer SJ, Hanson CV, Hendry RM, Milman G (1994) Evaluation of monoclonal antibodies to HIV-1 envelope by neutralization and binding assays: an international collaboration. AIDS 8: 169–181. doi: 10.1097/00002030-199402000-00004
[6]
Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, et al. (2001) A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 17: 1757–65. doi: 10.1089/08892220152741450
[7]
Binley JM, Wrin T, Korber B, Zwick MB, Wang M, et al. (2004) Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78: 13232–13252. doi: 10.1128/jvi.78.23.13232-13252.2004
[8]
Brunel FM, Zwick MB, Cardoso RM, Nelson JD, Wilson IA, et al. (2006) Structure-function analysis of the epitope for 4E10, a broadly neutralizing human immunodeficiency virus type 1 antibody. J Virol 80: 1680–1687. doi: 10.1128/jvi.80.4.1680-1687.2006
[9]
Cardoso RM, Brunel FM, Ferguson S, Zwick M, Burton DR, et al. (2007) Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J Mol Biol 365: 1533–1544. doi: 10.1016/j.jmb.2006.10.088
[10]
Cardoso RM, Zwick MB, Stanfield RL, Kunert R, Binley JM, et al. (2005) Broadly neutralizing anti-HIV antibody 4E10 recognizes a helical conformation of a highly conserved fusion-associated motif in gp41. Immunity 22: 163–173. doi: 10.1016/j.immuni.2004.12.011
[11]
Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, et al. (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477: 466–470. doi: 10.1038/nature10373
[12]
Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, et al. (2009) Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target. Science 326: 285–289. doi: 10.1126/science.1178746
[13]
Li Y, Svehla K, Louder MK, Wycuff D, Phogat S, et al. (2009) Analysis of neutralization specificities in polyclonal sera derived from human immunodeficiency virus type 1-infected individuals. J Virol 83: 1045–1059. doi: 10.1128/jvi.01992-08
[14]
Sather DN, Armann J, Ching LK, Mavrantoni A, Sellhorn G, et al. (2009) Factors associated with the development of cross-reactive neutralizing antibodies during human immunodeficiency virus type 1 infection. J Virol 83: 757–769. doi: 10.1128/jvi.02036-08
[15]
Muster T, Steindl F, Purtscher M, Trkola A, Klima A, et al. (1993) A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67: 6642–6647.
[16]
Haynes BF, Moody MA, Verkoczy L, Kelsoe G, Alam SM (2005) Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum Antibodies 14: 59–67.
[17]
Verkoczy L, Kelsoe G, Moody MA, Haynes BF (2011) Role of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Curr Opin Immunol 23: 383–390. doi: 10.1016/j.coi.2011.04.003
[18]
Alam SM, McAdams M, Boren D, Rak M, Scearce RM, et al. (2007) The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-HIV-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. Journal of Immunology 178: 4424–4435. doi: 10.4049/jimmunol.178.7.4424
[19]
Haynes BF, Fleming J, St Clair EW, Katinger H, Stiegler G, et al. (2005) Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308: 1906–1908. doi: 10.1126/science.1111781
[20]
Yang G, Holl TM, Liu Y, Li Y, Lu X, et al. (2013) Identification of autoantigens recognized by the 2F5 and 4E10 broadly neutralizing HIV-1 antibodies. J Exp Med 210: 241–256. doi: 10.1084/jem.20121977
[21]
Alam SM, Morelli M, Dennison SM, Liao HX, Zhang R, et al. (2009) Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci U S A 106: 20234–20239. doi: 10.1073/pnas.0908713106
[22]
Scherer EM, Leaman DP, Zwick MB, McMichael AJ, Burton DR (2010) Aromatic residues at the edge of the antibody combining site facilitate viral glycoprotein recognition through membrane interactions. Proc Natl Acad Sci U S A 107: 1529–1534. doi: 10.1073/pnas.0909680107
[23]
Cohn M (2008) An in depth analysis of the concept of “polyspecificity” assumed to characterize TCR/BCR recognition. Immunol Res 40: 128–147. doi: 10.1007/s12026-007-8003-z
[24]
Wucherpfennig KW, Allen PM, Celada F, Cohen IR, De Boer R, et al. (2007) Polyspecificity of T cell and B cell receptor recognition. Semin Immunol 19: 216–224. doi: 10.1016/j.smim.2007.02.012
[25]
Herzog S, Jumaa H (2012) Self-recognition and clonal selection: autoreactivity drives the generation of B cells. Curr Opin Immunol 24: 166–172. doi: 10.1016/j.coi.2012.02.004
[26]
Shlomchik MJ (2008) Sites and stages of autoreactive B cell activation and regulation. Immunity 28: 18–28. doi: 10.1016/j.immuni.2007.12.004
[27]
Vettermann C, Jack HM (2010) The pre-B cell receptor: turning autoreactivity into self-defense. Trends Immunol 31: 176–183. doi: 10.1016/j.it.2010.02.004
[28]
Verkoczy L, Diaz M, Holl TM, Ouyang YB, Bouton-Verville H, et al. (2010) Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proc Natl Acad Sci U S A 107: 181–186. doi: 10.1073/pnas.0912914107
[29]
Kallenberg CG, van der Meulen J, Pastoor GW, Snijder JA, Feltkamp TE, et al. (1983) Human fibroblasts, a convenient nuclear substrate for detection of anti-nuclear antibodies including anti-centromere antibodies. Scand J Rheumatol 12: 193–200. doi: 10.3109/03009748309098532
[30]
Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65: 2493–2506. doi: 10.1007/s00018-008-8030-5
[31]
Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192: 7–16. doi: 10.1083/jcb.201006159
[32]
Suh-Lailam BB, Cromar A, Davis KW, Tebo AE (2012) APhL antibody ELISA as an alternative to anticardiolipin test for the diagnosis of antiphospholipid syndrome. Int J Clin Exp Pathol 5: 210–215.
[33]
Scherer EM, Zwick MB, Teyton L, Burton DR (2007) Difficulties in eliciting broadly neutralizing anti-HIV antibodies are not explained by cardiolipin autoreactivity. AIDS 21: 2131–2139. doi: 10.1097/qad.0b013e3282a4a632
[34]
Xu H, Song L, Kim M, Holmes MA, Kraft Z, et al. (2010) Interactions between lipids and human anti-HIV antibody 4E10 can be reduced without ablating neutralizing activity. J Virol 84: 1076–1088. doi: 10.1128/jvi.02113-09
[35]
Tong T, Crooks ET, Osawa K, Binley JM (2012) HIV-1 virus-like particles bearing pure env trimers expose neutralizing epitopes but occlude nonneutralizing epitopes. J Virol 86: 3574–3587. doi: 10.1128/jvi.06938-11
[36]
Ferguson CG, James RD, Bigman CS, Shepard DA, Abdiche Y, et al. (2005) ‘Phosphoinositide-containing polymerized liposomes: stable membrane-mimetic vesicles for protein-lipid binding analysis. Bioconjug Chem 16: 1475–1483. doi: 10.1021/bc050197q
[37]
Martinez V, Diemert MC, Braibant M, Potard V, Charuel JL, et al. (2009) Anticardiolipin antibodies in HIV infection are independently associated with antibodies to the membrane proximal external region of gp41 and with cell-associated HIV DNA and immune activation. Clin Infect Dis 48: 123–132. doi: 10.1086/595013
[38]
Sene D, Piette JC, Cacoub P (2009) [Antiphospholipid antibodies, antiphospholipid syndrome and viral infections]. Rev Med Interne 30: 135–141. doi: 10.1016/j.autrev.2007.10.001
[39]
Galrao L, Brites C, Atta ML, Atta A, Lima A, et al. (2007) Antiphospholipid antibodies in HIV-positive patients. Clin Rheumatol 26: 1825–1830. doi: 10.1007/s10067-007-0581-6
[40]
Vcelar B, Stiegler G, Wolf HM, Muntean W, Leschnik B, et al. (2007) Reassessment of autoreactivity of the broadly neutralizing HIV antibodies 4E10 and 2F5 and retrospective analysis of clinical safety data. AIDS 21: 2161–2170. doi: 10.1097/qad.0b013e328285da15
[41]
Singh H, Henry KA, Wu SS, Chruscinski A, Utz PJ, et al. (2011) Reactivity profiles of broadly neutralizing anti-HIV-1 antibodies are distinct from those of pathogenic autoantibodies. AIDS 25: 1247–1257. doi: 10.1097/qad.0b013e32834785cf
[42]
Burton DR, Barbas CF 3rd, Persson MA, Koenig S, Chanock RM, et al. (1991) A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci U S A 88: 10134–10137. doi: 10.1073/pnas.88.22.10134
[43]
Roben P, Moore JP, Thali M, Sodroski J, Barbas CF 3rd, et al. (1994) Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J Virol 68: 4821–4828.
[44]
Sajadi MM, Lewis GK, Seaman MS, Guan Y, Redfield RR, et al. (2012) Signature biochemical properties of broadly cross-reactive HIV-1 neutralizing antibodies in human plasma. J Virol 86: 5014–5025. doi: 10.1128/jvi.06547-11
[45]
Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A, et al. (2011) Autoantigen discovery with a synthetic human peptidome. Nat Biotechnol 29: 535–541. doi: 10.1038/nbt.1856
[46]
Hangartner L, Senn BM, Ledermann B, Kalinke U, Seiler P, et al. (2003) Antiviral immune responses in gene-targeted mice expressing the immunoglobulin heavy chain of virus-neutralizing antibodies. Proc Natl Acad Sci U S A 100: 12883–12888. doi: 10.1073/pnas.2135542100
[47]
Hodnik V, Anderluh G (2010) Capture of intact liposomes on biacore sensor chips for protein-membrane interaction studies. Methods Mol Biol 627: 201–211. doi: 10.1007/978-1-60761-670-2_13
[48]
Harris EN, Pierangeli SS (2002) Revisiting the anticardiolipin test and its standardization. Lupus 11: 269–275. doi: 10.1191/0961203302lu202cr
Brown BK, Karasavvas N, Beck Z, Matyas GR, Birx DL, et al. (2007) Monoclonal antibodies to phosphatidylinositol phosphate neutralize human immunodeficiency virus type 1: role of phosphate-binding subsites. J Virol 81: 2087–2091. doi: 10.1128/jvi.02011-06
[51]
Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, et al. (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35: W522–W525. doi: 10.1093/nar/gkm276
[52]
Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32: W665–W667. doi: 10.1093/nar/gkh381
[53]
Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61: 704–721. doi: 10.1002/prot.20660
[54]
Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, et al. (2011) Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem 32: 1488–1491. doi: 10.1002/jcc.21720
[55]
Patten PA, Gray NS, Yang PL, Marks CB, Wedemayer GJ, et al. (1996) The immunological evolution of catalysis. Science 271: 1086–1091. doi: 10.1126/science.271.5252.1086
[56]
Wedemayer GJ, Patten PA, Wang LH, Schultz PG, Stevens RC (1997) Structural insights into the evolution of an antibody combining site. Science 276: 1665–1669. doi: 10.1126/science.276.5319.1665
[57]
Romesberg FE, Spiller B, Schultz PG, Stevens RC (1998) Immunological origins of binding and catalysis in a Diels-Alderase antibody. Science 279: 1929–1933. doi: 10.1126/science.279.5358.1929
[58]
Li Y, Li H, Yang F, Smith-Gill SJ, Mariuzza RA (2003) X-ray snapshots of the maturation of an antibody response to a protein antigen. Nat Struct Biol 10: 482–488. doi: 10.1038/nsb930
[59]
Terzyan S, Ramsland PA, Voss EW Jr, Herron JN, Edmundson AB (2004) Three-dimensional structures of idiotypically related Fabs with intermediate and high affinity for fluorescein. J Mol Biol 339: 1141–1151. doi: 10.1016/j.jmb.2004.03.080
[60]
Manivel V, Sahoo NC, Salunke DM, Rao KV (2000) Maturation of an antibody response is governed by modulations in flexibility of the antigen-combining site. Immunity 13: 611–620. doi: 10.1016/s1074-7613(00)00061-3
[61]
Sagawa T, Oda M, Ishimura M, Furukawa K, Azuma T (2003) Thermodynamic and kinetic aspects of antibody evolution during the immune response to hapten. Mol Immunol 39: 801–808. doi: 10.1016/s0161-5890(02)00282-1
[62]
Li Y, Lipschultz CA, Mohan S, Smith-Gill SJ (2001) Mutations of an epitope hot-spot residue alter rate limiting steps of antigen-antibody protein-protein associations. Biochemistry 40: 2011–2022. doi: 10.1021/bi0014148
[63]
Mohan S, Sinha N, Smith-Gill SJ (2003) Modeling the binding sites of anti-hen egg white lysozyme antibodies HyHEL-8 and HyHEL-26: an insight into the molecular basis of antibody cross-reactivity and specificity. Biophys J 85: 3221–3236. doi: 10.1016/s0006-3495(03)74740-7
[64]
Acierno JP, Braden BC, Klinke S, Goldbaum FA, Cauerhff A (2007) Affinity maturation increases the stability and plasticity of the Fv domain of anti-protein antibodies. J Mol Biol 374: 130–146. doi: 10.1016/j.jmb.2007.09.005
[65]
Zimmermann J, Romesberg FE, Brooks CL 3rd, Thorpe IF (2010) Molecular description of flexibility in an antibody combining site. J Phys Chem B 114: 7359–7370. doi: 10.1021/jp906421v
[66]
Kallewaard NL, McKinney BA, Gu Y, Chen A, Prasad BV, et al. (2008) Functional maturation of the human antibody response to rotavirus. J Immunol 180: 3980–3989. doi: 10.4049/jimmunol.180.6.3980
[67]
Schmidt AG, Xu H, Khan AR, O'Donnell T, Khurana S, et al. (2013) Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc Natl Acad Sci U S A 110: 264–269. doi: 10.1073/pnas.1218256109
[68]
Hager-Braun C, Katinger H, Tomer KB (2006) The HIV-neutralizing monoclonal antibody 4E10 recognizes N-terminal sequences on the native antigen. J Immunol 176: 7471–7481. doi: 10.4049/jimmunol.176.12.7471
[69]
Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40: D130–D135. doi: 10.1093/nar/gkr1079
[70]
Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35: D61–D65. doi: 10.1093/nar/gkl842
[71]
Mikoshiba K (2002) [IP3 receptor, a Ca2+ oscilator–role of IP3 receptor in development and neural plasticity]. Nihon Yakurigaku Zasshi 120: 6P–10P.
[72]
Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36.
[73]
Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371. doi: 10.1038/nprot.2009.2
[74]
Bandaranayake AD, Correnti C, Ryu BY, Brault M, Strong RK, et al. (2011) Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors. Nucleic Acids Res 39: e143. doi: 10.1093/nar/gkr706
[75]
Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2: 1528–1535. doi: 10.1038/nprot.2007.209
[76]
Sharp AH, Nucifora FC Jr, Blondel O, Sheppard CA, Zhang C, et al. (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406: 207–220. doi: 10.1002/(sici)1096-9861(19990405)406:2<207::aid-cne6>3.3.co;2-z
[77]
Das BK, Xia L, Palandjian L, Gozani O, Chyung Y, et al. (1999) Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol Cell Biol 19: 6796–6802.
[78]
Burton DR (2002) Antibodies, viruses and vaccines. Nat Rev Immunol 2: 706–713. doi: 10.1038/nri891
[79]
Killian JA, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends Biochem Sci 25: 429–434. doi: 10.1016/s0968-0004(00)01626-1
[80]
de Planque MR, Kruijtzer JA, Liskamp RM, Marsh D, Greathouse DV, et al. (1999) Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. Journal of Biological Chemistry 274: 20839–20846. doi: 10.1074/jbc.274.30.20839
[81]
Yau WM, Wimley WC, Gawrisch K, White SH (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37: 14713–14718. doi: 10.1021/bi980809c
[82]
Palsdottir H, Lojero CG, Trumpower BL, Hunte C (2003) Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278: 31303–31311. doi: 10.1074/jbc.m302195200
[83]
Chakrabarti P (1993) Anion binding sites in protein structures. J Mol Biol 234: 463–482. doi: 10.1006/jmbi.1993.1599
[84]
Copley RR, Barton GJ (1994) A structural analysis of phosphate and sulphate binding sites in proteins. Estimation of propensities for binding and conservation of phosphate binding sites. J Mol Biol 242: 321–329. doi: 10.1016/s0022-2836(84)71583-x
[85]
Duncan RS, Hwang SY, Koulen P (2007) Differential inositol 1,4,5-trisphosphate receptor signaling in a neuronal cell line. Int J Biochem Cell Biol 39: 1852–1862. doi: 10.1016/j.biocel.2007.05.003
[86]
Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, et al. (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333: 850–856. doi: 10.1126/science.1205669
[87]
Dreyfus C, Ekiert DC, Wilson IA (2013) Structure of a classical broadly neutralizing stem antibody in complex with a pandemic h2 influenza virus hemagglutinin. J Virol 87: 7149–7154. doi: 10.1128/jvi.02975-12
[88]
Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, et al. (2012) Highly conserved protective epitopes on influenza B viruses. Science 337: 1343–1348. doi: 10.1126/science.1222908
[89]
Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, et al. (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324: 246–251. doi: 10.1126/science.1171491
[90]
Sui J, Hwang WC, Perez S, Wei G, Aird D, et al. (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16: 265–273. doi: 10.1038/nsmb.1566
[91]
Guenaga J, Wyatt RT (2012) Structure-guided alterations of the gp41-directed HIV-1 broadly neutralizing antibody 2F5 reveal new properties regarding its neutralizing function. PLoS Pathog 8: e1002806. doi: 10.1371/journal.ppat.1002806
[92]
Correia BE, Ban YE, Holmes MA, Xu H, Ellingson K, et al. (2010) Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18: 1116–1126. doi: 10.1016/j.str.2010.06.010
[93]
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345. doi: 10.1038/nmeth.1318
[94]
Gibson DG, Smith HO, Hutchison CA 3rd, Venter JC, Merryman C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7: 901–903. doi: 10.1038/nmeth.1515
[95]
Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Meth Enzymol 276: 307–326. doi: 10.1016/s0076-6879(97)76066-x
Potterton E, Briggs P, Turkenburg M, Dodson E (2003) A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr 59: 1131–1137. doi: 10.1107/s0907444903008126
[98]
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
[99]
Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255. doi: 10.1107/s0907444996012255
[100]
Painter J, Merritt EA (2006) TLSMD web server for the generation of multi-group TLS models. Journal of Applied Crystallpgraphy 39: 109–111. doi: 10.1107/s0021889805038987
[101]
Painter J, Merritt EA (2006) Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr 62: 439–450. doi: 10.1107/s0907444906005270
[102]
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, et al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35: W375–W383. doi: 10.1093/nar/gkm216
[103]
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Research 28: 235–242. doi: 10.1093/nar/28.1.235
[104]
Azoitei ML, Correia BE, Ban YE, Carrico C, Kalyuzhniy O, et al. (2011) Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334: 373–376. doi: 10.1126/science.1209368
[105]
Larman HB, Laserson U, Querol L, Verhaeghen K, Solimini NL, et al. (2013) PhIP-Seq characterization of autoantibodies from patients with multiple sclerosis, type 1 diabetes and rheumatoid arthritis. J Autoimmun 3: 1–9. doi: 10.1016/j.jaut.2013.01.013
[106]
Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194: 531–544. doi: 10.1016/0022-2836(87)90679-6
[107]
Fraczkiewicz R, Braun W (1998) Exact and Efficient Analytical Calculation of the Accessible Surface Areas and Their Gradients for Macromolecules. J Comp Chem 19: 319–333. doi: 10.1002/(sici)1096-987x(199802)19:3<319::aid-jcc6>3.0.co;2-w
[108]
Bryson S, Julien JP, Hynes RC, Pai EF (2009) Crystallographic definition of the epitope promiscuity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5: vaccine design implications. J Virol 83: 11862–11875. doi: 10.1128/jvi.01604-09
[109]
DeLano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific: San Carlos, CA, USA.
[110]
Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, et al. (2001) Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293: 1155–1159. doi: 10.1126/science.1061692
[111]
Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18: 6097–6100. doi: 10.1093/nar/18.20.6097
[112]
Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18: 269–285. doi: 10.1016/0097-8485(94)85023-2
[113]
Pettit FK, Bare E, Tsai A, Bowie JU (2007) HotPatch: a statistical approach to finding biologically relevant features on protein surfaces. J Mol Biol 369: 863–879. doi: 10.1016/j.jmb.2007.03.036
[114]
Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA (1995) Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat Struct Biol 2: 968–974. doi: 10.1038/nsb1195-968