全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface

DOI: 10.1371/journal.ppat.1003611

Full-Text   Cite this paper   Add to My Lib

Abstract:

Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases.

References

[1]  Boeckh M, Geballe AP (2011) Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest 121: 1673–1680. doi: 10.1172/jci45449
[2]  Britt W (2008) Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 325: 417–470. doi: 10.1007/978-3-540-77349-8_23
[3]  Cook CH, Trgovcich J (2011) Cytomegalovirus reactivation in critically ill immunocompetent hosts: a decade of progress and remaining challenges. Antiviral Res 90: 151–159. doi: 10.1016/j.antiviral.2011.03.179
[4]  Stassen FR, Vainas T, Bruggeman CA (2008) Infection and atherosclerosis. An alternative view on an outdated hypothesis. Pharmacol Rep 60: 85–92.
[5]  Soderberg-Naucler C (2006) Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 259: 219–246. doi: 10.1111/j.1365-2796.2006.01618.x
[6]  Prichard MN, Kern ER (2011) The search for new therapies for human cytomegalovirus infections. Virus Res 157: 212–221. doi: 10.1016/j.virusres.2010.11.004
[7]  Chee MS, Bankier AT, Beck S, Bohni R, Brown CM, et al. (1990) Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154: 125–169. doi: 10.1007/978-3-642-74980-3_6
[8]  Bankier AT, Beck S, Bohni R, Brown CM, Cerny R, et al. (1991) The DNA sequence of the human cytomegalovirus genome. DNA Seq 2: 1–12. doi: 10.3109/10425179109008433
[9]  Rawlinson WD, Farrell HE, Barrell BG (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70: 8833–8849.
[10]  Kattenhorn LM, Mills R, Wagner M, Lomsadze A, Makeev V, et al. (2004) Identification of proteins associated with murine cytomegalovirus virions. J Virol 78: 11187–11197. doi: 10.1128/jvi.78.20.11187-11197.2004
[11]  Brocchieri L, Kledal TN, Karlin S, Mocarski ES (2005) Predicting coding potential from genome sequence: application to betaherpesviruses infecting rats and mice. J Virol 79: 7570–7596. doi: 10.1128/jvi.79.12.7570-7596.2005
[12]  Tang Q, Murphy EA, Maul GG (2006) Experimental confirmation of global murine cytomegalovirus open reading frames by transcriptional detection and partial characterization of newly described gene products. J Virol 80: 6873–6882. doi: 10.1128/jvi.00275-06
[13]  Lacaze P, Forster T, Ross A, Kerr LE, Salvo-Chirnside E, et al. (2011) Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes. J Virol 85: 6065–6076. doi: 10.1128/jvi.02341-10
[14]  Cheng TP, Valentine MC, Gao J, Pingel JT, Yokoyama WM (2010) Stability of murine cytomegalovirus genome after in vitro and in vivo passage. J Virol 84: 2623–2628. doi: 10.1128/jvi.02142-09
[15]  Marcinowski L, Lidschreiber M, Windhager L, Rieder M, Bosse JB, et al. (2012) Real-time transcriptional profiling of cellular and viral gene expression during lytic cytomegalovirus infection. PLoS Pathog 8: e1002908. doi: 10.1371/journal.ppat.1002908
[16]  Zhang G, Raghavan B, Kotur M, Cheatham J, Sedmak D, et al. (2007) Antisense transcription in the human cytomegalovirus transcriptome. J Virol 81: 11267–11281. doi: 10.1128/jvi.00007-07
[17]  Gatherer D, Seirafian S, Cunningham C, Holton M, Dargan DJ, et al. (2011) High-resolution human cytomegalovirus transcriptome. Proc Natl Acad Sci U S A 108: 19755–19760. doi: 10.1073/pnas.1115861108
[18]  Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY, et al. (2012) Decoding human cytomegalovirus. Science 338: 1088–1093. doi: 10.1126/science.1227919
[19]  Buck AH, Perot J, Chisholm MA, Kumar DS, Tuddenham L, et al. (2010) Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 16: 307–315. doi: 10.1261/rna.1819210
[20]  Marcinowski L, Tanguy M, Krmpotic A, Radle B, Lisnic VJ, et al. (2012) Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 8: e1002510. doi: 10.1371/journal.ppat.1002510
[21]  Costa V, Angelini C, De Feis I, Ciccodicola A (2010) Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol 2010: 853916. doi: 10.1155/2010/853916
[22]  Biegalke BJ, Lester E, Branda A, Rana R (2004) Characterization of the human cytomegalovirus UL34 gene. J Virol 78: 9579–9583. doi: 10.1128/jvi.78.17.9579-9583.2004
[23]  Scalzo AA, Dallas PB, Forbes CA, Mikosza AS, Fleming P, et al. (2004) The murine cytomegalovirus M73.5 gene, a member of a 3′ co-terminal alternatively spliced gene family, encodes the gp24 virion glycoprotein. Virology 329: 234–250. doi: 10.1016/j.virol.2004.08.015
[24]  Leach FS, Mocarski ES (1989) Regulation of cytomegalovirus late-gene expression: differential use of three start sites in the transcriptional activation of ICP36 gene expression. J Virol 63: 1783–1791.
[25]  Cocquet J, Chong A, Zhang G, Veitia RA (2006) Reverse transcriptase template switching and false alternative transcripts. Genomics 88: 127–131. doi: 10.1016/j.ygeno.2005.12.013
[26]  Leatham MP, Witte PR, Stinski MF (1991) Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines true late transcripts containing open reading frames for putative viral glycoproteins. J Virol 65: 6144–6153.
[27]  Rapp M, Lucin P, Messerle M, Loh LC, Koszinowski UH (1994) Expression of the murine cytomegalovirus glycoprotein H by recombinant vaccinia virus. J Gen Virol 75(Pt 1): 183–188. doi: 10.1099/0022-1317-75-1-183
[28]  Scalzo AA, Forbes CA, Davis-Poynter NJ, Farrell HE, Lyons PA (1995) DNA sequence and transcriptional analysis of the glycoprotein M gene of murine cytomegalovirus. J Gen Virol 76(Pt 11): 2895–2901. doi: 10.1099/0022-1317-76-11-2895
[29]  Cranmer LD, Clark C, Spector DH (1994) Cloning, characterization, and expression of the murine cytomegalovirus homologue of the human cytomegalovirus 28-kDa matrix phosphoprotein (UL99). Virology 205: 417–429. doi: 10.1006/viro.1994.1662
[30]  Lyons PA, Dallas PB, Carrello C, Shellam GR, Scalzo AA (1994) Mapping and transcriptional analysis of the murine cytomegalovirus homologue of the human cytomegalovirus UL103 open reading frame. Virology 204: 835–839. doi: 10.1006/viro.1994.1603
[31]  Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10: 48. doi: 10.1186/1471-2105-10-48
[32]  Eden E, Lipson D, Yogev S, Yakhini Z (2007) Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol 3: e39. doi: 10.1371/journal.pcbi.0030039
[33]  Kulesza CA, Shenk T (2006) Murine cytomegalovirus encodes a stable intron that facilitates persistent replication in the mouse. Proc Natl Acad Sci U S A 103: 18302–18307. doi: 10.1073/pnas.0608718103
[34]  Gutermann A, Bubeck A, Wagner M, Reusch U, Menard C, et al. (2002) Strategies for the identification and analysis of viral immune-evasive genes–cytomegalovirus as an example. Curr Top Microbiol Immunol 269: 1–22. doi: 10.1007/978-3-642-59421-2_1
[35]  van Beurden SJ, Peeters BP, Rottier PJ, Davison AJ, Engelsma MY (2013) Genome-wide gene expression analysis of anguillid herpesvirus 1. BMC Genomics 14: 83. doi: 10.1186/1471-2164-14-83
[36]  Johnson LS, Willert EK, Virgin HW (2010) Redefining the genetics of murine gammaherpesvirus 68 via transcriptome-based annotation. Cell Host Microbe 7: 516–526. doi: 10.1016/j.chom.2010.05.005
[37]  Chandriani S, Xu Y, Ganem D (2010) The lytic transcriptome of Kaposi's sarcoma-associated herpesvirus reveals extensive transcription of noncoding regions, including regions antisense to important genes. J Virol 84: 7934–7942. doi: 10.1128/jvi.00645-10
[38]  Smith LM, McWhorter AR, Masters LL, Shellam GR, Redwood AJ (2008) Laboratory strains of murine cytomegalovirus are genetically similar to but phenotypically distinct from wild strains of virus. J Virol 82: 6689–6696. doi: 10.1128/jvi.00160-08
[39]  Steitz J, Borah S, Cazalla D, Fok V, Lytle R, et al. (2011) Noncoding RNPs of viral origin. Cold Spring Harb Perspect Biol 3. doi: 10.1101/cshperspect.a005165
[40]  Sendler E, Johnson GD, Krawetz SA (2011) Local and global factors affecting RNA sequencing analysis. Anal Biochem 419: 317–322. doi: 10.1016/j.ab.2011.08.013
[41]  Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, et al. (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28: 503–510. doi: 10.1038/nbt.1633
[42]  Eppig JT, Bult CJ, Kadin JA, Richardson JE, Blake JA, et al. (2005) The Mouse Genome Database (MGD): from genes to mice–a community resource for mouse biology. Nucleic Acids Res 33: D471–475. doi: 10.1093/nar/gki113
[43]  Chen Z, Knutson E, Wang S, Martinez LA, Albrecht T (2007) Stabilization of p53 in human cytomegalovirus-initiated cells is associated with sequestration of HDM2 and decreased p53 ubiquitination. J Biol Chem 282: 29284–29295. doi: 10.1074/jbc.m705349200
[44]  Shenoy AR, Wellington DA, Kumar P, Kassa H, Booth CJ, et al. (2012) GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science 336: 481–485. doi: 10.1126/science.1217141
[45]  Seo JY, Yaneva R, Hinson ER, Cresswell P (2011) Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity. Science 332: 1093–1097. doi: 10.1126/science.1202007
[46]  Noda S, Aguirre SA, Bitmansour A, Brown JM, Sparer TE, et al. (2006) Cytomegalovirus MCK-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. Blood 107: 30–38. doi: 10.1182/blood-2005-05-1833
[47]  MacDonald MR, Burney MW, Resnick SB, Virgin HI (1999) Spliced mRNA encoding the murine cytomegalovirus chemokine homolog predicts a beta chemokine of novel structure. J Virol 73: 3682–3691.
[48]  Case R, Sharp E, Benned-Jensen T, Rosenkilde MA, Davis-Poynter N, et al. (2008) Functional analysis of the murine cytomegalovirus chemokine receptor homologue M33: Ablation of constitutive signaling is associated with an attenuated phenotype in vivo. Journal of Virology 82: 1884–1898. doi: 10.1128/jvi.02550-06
[49]  Kamakura M, Goshima F, Luo C, Kimura H, Nishiyama Y (2011) Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0. Virol J 8: 257. doi: 10.1186/1743-422x-8-257
[50]  Cheng Y, Sudarov A, Szulc KU, Sgaier SK, Stephen D, et al. (2010) The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum. Development 137: 519–529. doi: 10.1242/dev.027045
[51]  Koontz T, Bralic M, Tomac J, Pernjak-Pugel E, Bantug G, et al. (2008) Altered development of the brain after focal herpesvirus infection of the central nervous system. J Exp Med 205: 423–435. doi: 10.1084/jem.20071489
[52]  Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neuroscience 130: 567–580. doi: 10.1016/j.neuroscience.2004.09.042
[53]  Peng X, Gralinski L, Armour CD, Ferris MT, Thomas MJ, et al. (2010) Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio 1. doi: 10.1128/mbio.00206-10
[54]  Price RL, Bingmer K, Harkins L, Iwenofu OH, Kwon CH, et al. (2012) Cytomegalovirus infection leads to pleomorphic rhabdomyosarcomas in Trp53+/? mice. Cancer Res 72: 5669–5674. doi: 10.1158/0008-5472.can-12-2425
[55]  Taddeo B, Zhang W, Roizman B (2009) The virion-packaged endoribonuclease of herpes simplex virus 1 cleaves mRNA in polyribosomes. Proc Natl Acad Sci U S A 106: 12139–12144. doi: 10.1073/pnas.0905828106
[56]  Clyde K, Glaunsinger BA (2010) Getting the message direct manipulation of host mRNA accumulation during gammaherpesvirus lytic infection. Adv Virus Res 78: 1–42.
[57]  Smith RW, Graham SV, Gray NK (2008) Regulation of translation initiation by herpesviruses. Biochem Soc Trans 36: 701–707. doi: 10.1042/bst0360701
[58]  Dallman MJ, Smith E, Benson RA, Lamb JR (2005) Notch: control of lymphocyte differentiation in the periphery. Curr Opin Immunol 17: 259–266. doi: 10.1016/j.coi.2005.04.002
[59]  Ray N, Enquist LW (2004) Transcriptional response of a common permissive cell type to infection by two diverse alphaherpesviruses. J Virol 78: 3489–3501. doi: 10.1128/jvi.78.7.3489-3501.2004
[60]  Hayward SD, Liu J, Fujimuro M (2006) Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Sci STKE 2006: re4. doi: 10.1126/stke.3352006re4
[61]  Svensson A, Jakara E, Shestakov A, Eriksson K (2010) Inhibition of gamma-secretase cleavage in the notch signaling pathway blocks HSV-2-induced type I and type II interferon production. Viral Immunol 23: 647–651. doi: 10.1089/vim.2010.0013
[62]  Zine A, Van De Water TR, de Ribaupierre F (2000) Notch signaling regulates the pattern of auditory hair cell differentiation in mammals. Development 127: 3373–3383.
[63]  Murata J, Ikeda K, Okano H (2012) Notch signaling and the developing inner ear. Adv Exp Med Biol 727: 161–173. doi: 10.1007/978-1-4614-0899-4_12
[64]  Rabadan MA, Cayuso J, Le Dreau G, Cruz C, Barzi M, et al. (2012) Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death and Differentiation 19: 209–219. doi: 10.1038/cdd.2011.84
[65]  Beck RC, Padival M, Yeh D, Ralston J, Cooke KR, et al. (2009) The Notch ligands Jagged2, Delta1, and Delta4 induce differentiation and expansion of functional human NK cells from CD34+ cord blood hematopoietic progenitor cells. Biol Blood Marrow Transplant 15: 1026–1037. doi: 10.1016/j.bbmt.2009.06.002
[66]  Koyanagi A, Sekine C, Yagita H (2012) Expression of Notch receptors and ligands on immature and mature T cells. Biochem Biophys Res Commun 418: 799–805. doi: 10.1016/j.bbrc.2012.01.106
[67]  Brune w, Hengel H, Koszinowski U (1999.) A mouse model for cytomegalovirus infection. Current protocols in immunology. New York: John Wiley & Sons. pp.19.17.11–19.17.13.
[68]  Kielczewska A, Pyzik M, Sun T, Krmpotic A, Lodoen MB, et al. (2009) Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J Exp Med 206: 515–523. doi: 10.1084/jem.20080954
[69]  Jonjic S, Krmpotic A, Arapovic J, Koszinowski UH (2008) Dissection of the antiviral NK cell response by MCMV mutants. Methods Mol Biol 415: 127–149. doi: 10.1007/978-1-59745-570-1_8
[70]  Wagner M, Koszinowski UH (2004) Mutagenesis of viral BACs with linear PCR fragments (ET recombination). Methods Mol Biol 256: 257–268. doi: 10.1385/1-59259-753-x:257
[71]  Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73: 7056–7060.
[72]  Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al. (2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26. doi: 10.1038/nbt.1754
[73]  Xu G, Deng N, Zhao Z, Judeh T, Flemington E, et al. (2011) SAMMate: a GUI tool for processing short read alignments in SAM/BAM format. Source Code Biol Med 6: 2. doi: 10.1186/1751-0473-6-2
[74]  Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE (2012) the Mouse Genome Database Group (2012) The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res 40(1): D881–86. doi: 10.1093/nar/gkr974
[75]  Maglott D, Jim O, Pruitt KD, Tatusova T (2005) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 1 33: D54–D58. doi: 10.1093/nar/gki031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133