[1] | Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85(Pt 2): 411–426. doi: 10.1017/s0031182000055360
|
[2] | Ewald PW (1995) The evolution of virulence: a unifying link between parasitology and ecology. J Parasitol 81: 659–669. doi: 10.2307/3283951
|
[3] | Lipstich M, Siller S, Norwak MA (1996) The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50: 1729–1741. doi: 10.2307/2410731
|
[4] | Ebert D, Mangin KL (1997) The influence of host demography on the evolution of virulence of a microsporidian gut parasite. Evolution 51: 1828–1837. doi: 10.2307/2411005
|
[5] | Messenger SL, Molineux IJ, Bull JJ (1999) Virulence evolution in a virus obeys a trade-off. Proc Biol Sci 266: 397–404. doi: 10.1098/rspb.1999.0651
|
[6] | Stewart AD, Logsdon JMJ, Kelley SE (2005) An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59: 730–739. doi: 10.1111/j.0014-3820.2005.tb01749.x
|
[7] | Magalon H, Nidelet T, Martin G, Kaltz O (2010) Host growth conditions influence experimental evolution of life history and virulence of a parasite with vertical and horizontal transmission. Evolution 64: 2126–2138. doi: 10.1111/j.1558-5646.2010.00974.x
|
[8] | Ewald PW (1983) Host–parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Syst 14: 465–485. doi: 10.1146/annurev.es.14.110183.002341
|
[9] | Day T (2001) Parasite transmission modes and the evolution of virulence. Evol Int J Org Evol 55: 2389–2400. doi: 10.1554/0014-3820(2001)055[2389:ptmate]2.0.co;2
|
[10] | Day T (2002) The evolution of virulence in vector-borne and directly transmitted parasites. Theor Popul Biol 62: 199–213. doi: 10.1006/tpbi.2002.1595
|
[11] | Leggett HC, Cornwallis CK, West SA (2012) Mechanisms of pathogenesis, infective dose and virulence in human parasites. Plos Pathog 8: e1002512 doi:10.1371/journal.ppat.1002512.
|
[12] | Vizoso DB, Ebert D (2005) Phenotypic plasticity of host-parasite interactions in response to the route of infection. J Evol Biol 18: 911–921. doi: 10.1111/j.1420-9101.2005.00920.x
|
[13] | Ben-Ami F, Rigaud T, Ebert D (2011) The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. J Evol Biol 24: 1307–1316. doi: 10.1111/j.1420-9101.2011.02264.x
|
[14] | Schmid-Hempel P (2011) Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics. New York: Oxford University Press.
|
[15] | Schmid-Hempel P, Ebert D (2003) On the evolutionary ecology of specific immune defence. Trends Ecol Evol 18: 27–32. doi: 10.1016/s0169-5347(02)00013-7
|
[16] | Boughton RK, Joop G, Armitage SAO (2011) Outdoor Immunology: methodological considerations for ecologists. Funct Ecol 25: 81–100. doi: 10.1111/j.1365-2435.2010.01817.x
|
[17] | Raberg L, Sim D, Read AF (2007) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318: 812–814. doi: 10.1126/science.1148526
|
[18] | Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8: 889–895. doi: 10.1038/nri2432
|
[19] | Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335: 936–941. doi: 10.1126/science.1214935
|
[20] | Lhocine N, Ribeiro PS, Buchon N, Wepf A, Wilson R, et al. (2008) PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4: 147–158. doi: 10.1016/j.chom.2008.07.004
|
[21] | Ayres JS, Schneider DS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. Plos Biol 6: 2764–2773. doi: 10.1371/journal.pbio.0060305
|
[22] | Neyen C, Poidevin M, Roussel A, Lemaitre B (2012) Tissue- and ligand-specific sensing of gram-negative infection in drosophila by PGRP-LC isoforms and PGRP-LE. J Immunol 189: 1886–1897. doi: 10.4049/jimmunol.1201022
|
[23] | Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25: 697–743 doi:10.1146/annurev.immunol.25.022106.141615.
|
[24] | Shirasu-Hiza MM, Dionne MS, Pham LN, Ayres JS, Schneider DS (2007) Interactions between circadian rhythm and immunity in Drosophila melanogaster. Curr Biol 17: R353–5. doi: 10.1016/j.cub.2007.03.049
|
[25] | Kounatidis I, Ligoxygakis P (2012) Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2: 120075. doi: 10.1098/rsob.120075
|
[26] | Boman HG, Nilsson I, Rasmuson B (1972) Inducible antibacterial defence system in Drosophila. Nature 237: 232–235. doi: 10.1038/237232a0
|
[27] | Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983. doi: 10.1016/s0092-8674(00)80172-5
|
[28] | Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, et al. (2001) A genome-wide analysis of immune responses in Drosophila. Proc Natl Acad Sci U S 98: 15119–15124. doi: 10.1073/pnas.261573998
|
[29] | De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S 98: 12590–12595. doi: 10.1073/pnas.221458698
|
[30] | Nehme NT, Liegeois S, Kele B, Giammarinaro P, Pradel E, et al. (2007) A model of bacterial intestinal infections in Drosophila melanogaster. Plos Pathog 3: e173. doi: 10.1371/journal.ppat.0030173
|
[31] | Basset A, Khush RS, Braun A, Gardan L, Boccard F, et al. (2000) The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci U S 97: 3376–3381. doi: 10.1073/pnas.97.7.3376
|
[32] | Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, et al. (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S 102: 11414–11419. doi: 10.1073/pnas.0502240102
|
[33] | Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5: 200–211. doi: 10.1016/j.chom.2009.01.003
|
[34] | Limmer S, Haller S, Drenkard E, Lee J, Yu S, et al. (2011) Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S 108: 17378–17383. doi: 10.1073/pnas.1114907108
|
[35] | Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6: 302–313 doi:10.1038/nrmicro1870.
|
[36] | Teixeira L (2012) Whole-genome expression profile analysis of Drosophila melanogaster immune responses. Brief Funct Genomics 11: 375–386. doi: 10.1093/bfgp/els043
|
[37] | Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310: 847–850. doi: 10.1126/science.1117311
|
[38] | Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. Plos Pathog 2: e56. doi: 10.1371/journal.ppat.0020056
|
[39] | Ryu JH, Ha EM, Oh CT, Seol JH, Brey PT, et al. (2006) An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity. Embo J 25: 3693–3701. doi: 10.1038/sj.emboj.7601233
|
[40] | Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S 108: 15966–15971. doi: 10.1073/pnas.1105994108
|
[41] | Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23: 2333–2344. doi: 10.1101/gad.1827009
|
[42] | Dionne MS, Schneider DS (2008) Models of infectious diseases in the fruit fly Drosophila melanogaster. Dis Model Mech 1: 43–49.
|
[43] | Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, et al. (2012) Experimental evolution. Trends Ecol Evol 27: 547–560. doi: 10.1016/j.tree.2012.06.001
|
[44] | Kraaijeveld AR, Godfray HC (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389: 278–280.
|
[45] | Kraaijeveld AR, Godfray HC (2008) Selection for resistance to a fungal pathogen in Drosophila melanogaster. Hered Edinb 100: 400–406. doi: 10.1038/sj.hdy.6801092
|
[46] | Ye YH, Chenoweth SF, McGraw EA (2009) Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster. Plos Pathog 5: e1000385. doi: 10.1371/journal.ppat.1000385
|
[47] | Wolfle S, Trienens M, Rohlfs M (2009) Experimental evolution of resistance against a competing fungus in Drosophila melanogaster. Oecologia 161: 781–790. doi: 10.1007/s00442-009-1414-x
|
[48] | Wertheim B, Kraaijeveld AR, Hopkins MG, Walther Boer M, Godfray HC (2011) Functional genomics of the evolution of increased resistance to parasitism in Drosophila. Mol Ecol 20: 932–949. doi: 10.1111/j.1365-294x.2010.04911.x
|
[49] | Davis MM, Engstrom Y (2012) Immune response in the barrier epithelia: lessons from the fruit fly Drosophila melanogaster. J Innate Immun 4: 273–283. doi: 10.1159/000332947
|
[50] | Charroux B, Royet J (2009) Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. Proc Natl Acad Sci U S 106: 9797–9802. doi: 10.1073/pnas.0903971106
|
[51] | Lazzaro BP, Clark AG (2003) Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. Mol Biol Evol 20: 914–923. doi: 10.1093/molbev/msg109
|
[52] | Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54: 51–63. doi: 10.1111/j.0014-3820.2000.tb00007.x
|
[53] | Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12: 60–70. doi: 10.1016/j.chom.2012.06.001
|
[54] | Chambers MC, Lightfield KL, Schneider DS (2012) How the fly balances its ability to combat different pathogens. Plos Pathog 8: e1002970 doi:10.1371/journal.ppat.1002970.
|
[55] | Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, et al. (2005) Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S 102: 2573–2578. doi: 10.1073/pnas.0409588102
|
[56] | Schlenke TA, Morales J, Govind S, Clark AG (2007) Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. Plos Pathog 3: 1486–1501. doi: 10.1371/journal.ppat.0030158
|
[57] | Hill-Burns EM, Clark AG (2009) X-linked variation in immune response in Drosophila melanogaster. Genetics 183: 1477–1491. doi: 10.1534/genetics.108.093971
|
[58] | Zbinden M, Haag CR, Ebert D (2008) Experimental evolution of field populations of Daphnia magna in response to parasite treatment. J Evol Biol 21: 1068–1078. doi: 10.1111/j.1420-9101.2008.01541.x
|
[59] | Kraaijeveld AR, Layen SJ, Futerman PH, Godfray HC (2012) Lack of Phenotypic and Evolutionary Cross-Resistance against Parasitoids and Pathogens in Drosophila melanogaster. Plos One 7: e53002. doi: 10.1371/journal.pone.0053002
|
[60] | Hodges TK, Laskowski KL, Squadrito GL, De Luca M, Leips J (2013) Defense traits of larval Drosophila melanogaster exhibit genetically based trade-offs against different species of parasitoids. Evol Int J Org Evol 67: 749–760 doi:10.1111/j.1558-5646.2012.01813.x.
|
[61] | Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. Plos Biol 6: e2 doi:[]08-PLBI-RA-3425 [pii] 10.1371/journal.pbio.1000002.
|
[62] | Therneau TM, Grambsch PM (2000) Modeling survival data: extending the Cox model. New York: Springer.
|