全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sustained Autophagy Contributes to Measles Virus Infectivity

DOI: 10.1371/journal.ppat.1003599

Full-Text   Cite this paper   Add to My Lib

Abstract:

The interplay between autophagy and intracellular pathogens is intricate as autophagy is an essential cellular response to fight against infections, whereas numerous microbes have developed strategies to escape this process or even exploit it to their own benefit. The fine tuned timing and/or selective molecular pathways involved in the induction of autophagy upon infections could be the cornerstone allowing cells to either control intracellular pathogens, or be invaded by them. We report here that measles virus infection induces successive autophagy signallings in permissive cells, via distinct and uncoupled molecular pathways. Immediately upon infection, attenuated measles virus induces a first transient wave of autophagy, via a pathway involving its cellular receptor CD46 and the scaffold protein GOPC. Soon after infection, a new autophagy signalling is initiated which requires viral replication and the expression of the non-structural measles virus protein C. Strikingly, this second autophagy signalling can be sustained overtime within infected cells, independently of the expression of C, but via a third autophagy input resulting from cell-cell fusion and the formation of syncytia. Whereas this sustained autophagy signalling leads to the autophagy degradation of cellular contents, viral proteins escape from degradation. Furthermore, this autophagy flux is ultimately exploited by measles virus to limit the death of infected cells and to improve viral particle formation. Whereas CD150 dependent virulent strains of measles virus are unable to induce the early CD46/GOPC dependent autophagy wave, they induce and exploit the late and sustained autophagy. Overall, our work describes distinct molecular pathways for an induction of self-beneficial sustained autophagy by measles virus.

References

[1]  Moss WJ, Griffin DE (2012) Measles. Lancet 379: 153–164. doi: 10.1016/s0140-6736(10)62352-5
[2]  Griffin DE (2010) Measles virus-induced suppression of immune responses. Immunol Rev 236: 176–189. doi: 10.1111/j.1600-065x.2010.00925.x
[3]  Oldstone MB (2009) Modeling subacute sclerosing panencephalitis in a transgenic mouse system: uncoding pathogenesis of disease and illuminating components of immune control. Curr Top Microbiol Immunol 330: 31–54. doi: 10.1007/978-3-540-70617-5_2
[4]  Young VA, Rall GF (2009) Making it to the synapse: measles virus spread in and among neurons. Curr Top Microbiol Immunol 330: 3–30. doi: 10.1007/978-3-540-70617-5_1
[5]  Rall GF (2003) Measles virus 1998–2002: progress and controversy. Annu Rev Microbiol 57: 343–367. doi: 10.1146/annurev.micro.57.030502.090843
[6]  Moss WJ, Griffin DE (2006) Global measles elimination. Nat Rev Microbiol 4: 900–908. doi: 10.1038/nrmicro1550
[7]  Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, et al. (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67: 6025–6032.
[8]  Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406: 893–897. doi: 10.1038/35022579
[9]  Muhlebach MD, Mateo M, Sinn PL, Prufer S, Uhlig KM, et al. (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480: 530–533. doi: 10.1038/nature10639
[10]  Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, et al. (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 7: e1002240. doi: 10.1371/journal.ppat.1002240
[11]  Navaratnarajah CK, Leonard VH, Cattaneo R (2009) Measles virus glycoprotein complex assembly, receptor attachment, and cell entry. Curr Top Microbiol Immunol 329: 59–76. doi: 10.1007/978-3-540-70523-9_4
[12]  Navaratnarajah CK, Oezguen N, Rupp L, Kay L, Leonard VH, et al. (2011) The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Nat Struct Mol Biol 18: 128–134. doi: 10.1038/nsmb.1967
[13]  Plumet S, Duprex WP, Gerlier D (2005) Dynamics of viral RNA synthesis during measles virus infection. J Virol 79: 6900–6908. doi: 10.1128/jvi.79.11.6900-6908.2005
[14]  Gerlier D, Valentin H (2009) Measles virus interaction with host cells and impact on innate immunity. Curr Top Microbiol Immunol 329: 163–191. doi: 10.1007/978-3-540-70523-9_8
[15]  Gregoire IP, Richetta C, Meyniel-Schicklin L, Borel S, Pradezynski F, et al. (2011) IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network. PLoS Pathog 7: e1002422. doi: 10.1371/journal.ppat.1002422
[16]  Joubert PE, Meiffren G, Gregoire IP, Pontini G, Richetta C, et al. (2009) Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 6: 354–366. doi: 10.1016/j.chom.2009.09.006
[17]  Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469: 323–335. doi: 10.1038/nature09782
[18]  Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12: 823–830. doi: 10.1038/ncb0910-823
[19]  Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477. doi: 10.1016/s1534-5807(04)00099-1
[20]  Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315: 1398–1401. doi: 10.1126/science.1136880
[21]  Richetta C, Faure M (2012) Autophagy in antiviral innate immunity. Cell Microbiol 15 (3) 368–76. doi: 10.1111/cmi.12043
[22]  English L, Chemali M, Duron J, Rondeau C, Laplante A, et al. (2009) Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10: 480–487. doi: 10.1038/ni.1720
[23]  Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, et al. (2005) Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307: 593–596. doi: 10.1126/science.1104904
[24]  Schmid D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26: 79–92. doi: 10.1016/j.immuni.2006.10.018
[25]  Espert L, Codogno P, Biard-Piechaczyk M (2007) Involvement of autophagy in viral infections: antiviral function and subversion by viruses. J Mol Med 85 (8) 811–23. doi: 10.1007/s00109-007-0173-6
[26]  Meiffren G, Joubert PE, Gregoire IP, Codogno P, Rabourdin-Combe C, et al. (2010) Pathogen recognition by the cell surface receptor CD46 induces autophagy. Autophagy 6: 299–300. doi: 10.4161/auto.6.2.11132
[27]  Gregoire IP, Rabourdin-Combe C, Faure M (2012) Autophagy and RNA virus interactomes reveal IRGM as a common target. Autophagy 8: 1136–7. doi: 10.4161/auto.20339
[28]  Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445–544.
[29]  Tatsuo H, Okuma K, Tanaka K, Ono N, Minagawa H, et al. (2000) Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74: 4139–4145. doi: 10.1128/jvi.74.9.4139-4145.2000
[30]  Kimura S, Fujita N, Noda T, Yoshimori T (2009) Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 452: 1–12. doi: 10.1016/s0076-6879(08)03601-x
[31]  Sarkar S, Korolchuk V, Renna M, Winslow A, Rubinsztein DC (2009) Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates. Autophagy 5: 307–313. doi: 10.4161/auto.5.3.7664
[32]  Berger SB, Romero X, Ma C, Wang G, Faubion WA, et al. (2010) SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nat Immunol 11: 920–27. doi: 10.1038/ni.1931
[33]  Chaturvedi A, Dorward D, Pierce SK (2008) The B cell receptor governs the subcellular location of Toll-like receptor 9 leading to hyperresponses to DNA-containing antigens. Immunity 28: 799–809. doi: 10.1016/j.immuni.2008.03.019
[34]  Iacobelli-Martinez M, Nemerow GR (2007) Preferential activation of Toll-like receptor nine by CD46-utilizing adenoviruses. J Virol 81: 1305–1312. doi: 10.1128/jvi.01926-06
[35]  Petkova DS, Viret C, Faure M (2013) IRGM in autophagy and viral infections. Front Immunol 3: 426. doi: 10.3389/fimmu.2012.00426
[36]  Shaffer JA, Bellini WJ, Rota PA (2003) The C protein of measles virus inhibits the type I interferon response. Virology 315: 389–397. doi: 10.1016/s0042-6822(03)00537-3
[37]  Nakatsu Y, Takeda M, Ohno S, Shirogane Y, Iwasaki M, et al. (2008) Measles virus circumvents the host interferon response by different actions of the C and V proteins. J Virol 82: 8296–8306. doi: 10.1128/jvi.00108-08
[38]  Delpeut S, Rudd PA, Labonte P, von Messling V (2012) Membrane fusion-mediated autophagy induction enhances morbillivirus cell-to-cell spread. J Virol 86: 8527–8535. doi: 10.1128/jvi.00807-12
[39]  Herschke F, Plumet S, Duhen T, Azocar O, Druelle J, et al. (2007) Cell-cell fusion induced by measles virus amplifies the type I interferon response. J Virol 81: 12859–12871. doi: 10.1128/jvi.00078-07
[40]  Takeuchi K, Takeda M, Miyajima N, Ami Y, Nagata N, et al. (2005) Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and in macaques. J Virol 79: 7838–7844. doi: 10.1128/jvi.79.12.7838-7844.2005
[41]  McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z (2011) Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem 286: 22147–22159. doi: 10.1074/jbc.m110.192500
[42]  Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, et al. (2012) Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 209: 1029–1047. doi: 10.1084/jem.20110996
[43]  Heaton NS, Randall G (2010) Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 8: 422–432. doi: 10.1016/j.chom.2010.10.006
[44]  Richards AL, Jackson WT (2012) Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog 8: e1003046. doi: 10.1371/journal.ppat.1003046
[45]  Mateo R, Nagamine CM, Spagnolo J, Méndez E, Rahe M, et al. (2013) Inhibition of cellular autophagy deranges dengue virion maturation. J Virol 87: 1312–1321. doi: 10.1128/jvi.02177-12

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133