[1] | Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260. doi: 10.1038/38444
|
[2] | Kepert JF, Mazurkiewicz J, Heuvelman GL, Toth KF, Rippe K (2005) NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation. J Biol Chem 280: 34063–34072. doi: 10.1074/jbc.m507322200
|
[3] | Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12: 554–564. doi: 10.1038/nrg3017
|
[4] | Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20: 259–266. doi: 10.1038/nsmb.2470
|
[5] | Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13: 436–447. doi: 10.1038/nrm3382
|
[6] | Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21: 175–186. doi: 10.1016/j.gde.2011.01.022
|
[7] | Abbott DW, Laszczak M, Lewis JD, Su H, Moore SC, et al. (2004) Structural characterization of macroH2A containing chromatin. Biochemistry 43: 1352–1359. doi: 10.1021/bi035859i
|
[8] | Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21: 1519–1529. doi: 10.1101/gad.1547707
|
[9] | Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51–61. doi: 10.1016/s0092-8674(03)01064-x
|
[10] | Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24: 1253–1265. doi: 10.1101/gad.566910
|
[11] | Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A 107 (32) 14075–80. doi: 10.1073/pnas.1008850107
|
[12] | Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, et al. (2010) A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev 24: 159–170. doi: 10.1101/gad.1857410
|
[13] | Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, et al. (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140: 678–691. doi: 10.1016/j.cell.2010.01.003
|
[14] | Nevels M, Nitzsche A, Paulus C (2011) How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 21: 154–180. doi: 10.1002/rmv.690
|
[15] | Bloom DC, Giordani NV, Kwiatkowski DL (2010) Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta 1799: 246–256. doi: 10.1016/j.bbagrm.2009.12.001
|
[16] | Knipe DM, Cliffe A (2008) Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6: 211–221. doi: 10.1038/nrmicro1794
|
[17] | Lacasse JJ, Schang LM (2010) During lytic infections, herpes simplex virus type 1 DNA is in complexes with the properties of unstable nucleosomes. J Virol 84: 1920–1933. doi: 10.1128/jvi.01934-09
|
[18] | Gibson W, Roizman B (1971) Compartmentalization of spermine and spermidine in the herpes simplex virion. Proc Natl Acad Sci U S A 68: 2818–2821. doi: 10.1073/pnas.68.11.2818
|
[19] | Oh J, Fraser NW (2008) Temporal association of the herpes simplex virus genome with histone proteins during a lytic infection. J Virol 82: 3530–3537. doi: 10.1128/jvi.00586-07
|
[20] | Lacasse JJ, Schang LM (2012) Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication. J Virol 86: 11287–11300. doi: 10.1128/jvi.01468-12
|
[21] | Schek N, Bachenheimer SL (1985) Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells. J Virol 55: 601–610.
|
[22] | Sorenson CM, Hart PA, Ross J (1991) Analysis of herpes simplex virus-induced mRNA destabilizing activity using an in vitro mRNA decay system. Nucleic Acids Res 19: 4459–4465. doi: 10.1093/nar/19.16.4459
|
[23] | Yager DR, Bachenheimer SL (1988) Synthesis and metabolism of cellular transcripts in HSV-1 infected cells. Virus Genes 1: 135–148. doi: 10.1007/bf00555933
|
[24] | Conn KL, Hendzel MJ, Schang LM (2008) Linker histones are mobilized during infection with herpes simplex virus type 1. J Virol 82: 8629–8646. doi: 10.1128/jvi.00616-08
|
[25] | Conn KL, Hendzel MJ, Schang LM (2011) Core histones H2B and H4 are mobilized during infection with herpes simplex virus 1. J Virol 85: 13234–13252. doi: 10.1128/jvi.06038-11
|
[26] | Das C, Tyler JK, Churchill ME (2010) The histone shuffle: histone chaperones in an energetic dance. Trends Biochem Sci doi: 10.1016/j.tibs.2010.04.001
|
[27] | Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, et al. (2009) The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol 83: 1416–1421. doi: 10.1128/jvi.01276-08
|
[28] | Gu H, Liang Y, Mandel G, Roizman B (2005) Components of the REST/CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 102: 7571–7576. doi: 10.1073/pnas.0502658102
|
[29] | Gu H, Roizman B (2007) Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci U S A 104: 17134–17139. doi: 10.1073/pnas.0707266104
|
[30] | Herrera FJ, Triezenberg SJ (2004) VP16-dependent association of chromatin-modifying coactivators and underrepresentation of histones at immediate-early gene promoters during herpes simplex virus infection. J Virol 78: 9689–9696. doi: 10.1128/jvi.78.18.9689-9696.2004
|
[31] | Kutluay SB, DeVos SL, Klomp JE, Triezenberg SJ (2009) Transcriptional coactivators are not required for herpes simplex virus type 1 immediate-early gene expression in vitro. J Virol 83: 3436–3449. doi: 10.1128/jvi.02349-08
|
[32] | Lomonte P, Thomas J, Texier P, Caron C, Khochbin S, et al. (2004) Functional interaction between class II histone deacetylases and ICP0 of herpes simplex virus type 1. J Virol 78: 6744–6757. doi: 10.1128/jvi.78.13.6744-6757.2004
|
[33] | Melroe GT, Silva L, Schaffer PA, Knipe DM (2007) Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction. Virology 360: 305–321. doi: 10.1016/j.virol.2006.10.028
|
[34] | Memedula S, Belmont AS (2003) Sequential recruitment of HAT and SWI/SNF components to condensed chromatin by VP16. Curr Biol 13: 241–246. doi: 10.1016/s0960-9822(03)00048-4
|
[35] | Poon AP, Gu H, Roizman B (2006) ICP0 and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc Natl Acad Sci U S A 103: 9993–9998. doi: 10.1073/pnas.0604142103
|
[36] | Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145: 1341–1354. doi: 10.1083/jcb.145.7.1341
|
[37] | Hancock MH, Cliffe AR, Knipe DM, Smiley JR (2010) Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells. J Virol 84: 1366–1375. doi: 10.1128/jvi.01727-09
|
[38] | Mossman KL, Smiley JR (1999) Truncation of the C-terminal acidic transcriptional activation domain of herpes simplex virus VP16 renders expression of the immediate-early genes almost entirely dependent on ICP0. J Virol 73: 9726–9733.
|
[39] | Yao F, Schaffer PA (1995) An activity specified by the osteosarcoma line U2OS can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1. J Virol 69: 6249–6258.
|
[40] | Monier K, Armas JC, Etteldorf S, Ghazal P, Sullivan KF (2000) Annexation of the interchromosomal space during viral infection. Nat Cell Biol 2: 661–665. doi: 10.1038/35023615
|
[41] | Schang LM, Phillips J, Schaffer PA (1998) Requirement for cellular cyclin-dependent kinases in herpes simplex virus replication and transcription. J Virol 72: 5626–5637.
|
[42] | Kimura H, Cook PR (2001) Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J Cell Biol 153: 1341–1353. doi: 10.1083/jcb.153.7.1341
|
[43] | Schang LM, Rosenberg A, Schaffer PA (2000) Roscovitine, a specific inhibitor of cellular cyclin-dependent kinases, inhibits herpes simplex virus DNA synthesis in the presence of viral early proteins. J Virol 74: 2107–2120. doi: 10.1128/jvi.74.5.2107-2120.2000
|
[44] | Hong L, Schroth GP, Matthews HR, Yau P, Bradbury EM (1993) Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J Biol Chem 268: 305–314.
|
[45] | Cai WZ, Schaffer PA (1989) Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol 63: 4579–4589.
|
[46] | Pina B, Suau P (1987) Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev Biol 123: 51–58. doi: 10.1016/0012-1606(87)90426-x
|
[47] | Loppin B, Bonnefoy E, Anselme C, Laurencon A, Karr TL, et al. (2005) The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437: 1386–1390. doi: 10.1038/nature04059
|
[48] | Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, et al. (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317: 1087–1090. doi: 10.1126/science.1145339
|
[49] | Bonnefoy E, Orsi GA, Couble P, Loppin B (2007) The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization. PLoS Genet 3: 1991–2006. doi: 10.1371/journal.pgen.0030182.eor
|
[50] | Conn KL, Schang LM (2013) Chromatin Dynamics during Lytic Infection with Herpes Simplex Virus 1. Viruses 5: 1758–1786. doi: 10.3390/v5071758
|
[51] | Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, et al. (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281: 559–568. doi: 10.1074/jbc.m509266200
|
[52] | Peng H, Nogueira ML, Vogel JL, Kristie TM (2010) Transcriptional coactivator HCF-1 couples the histone chaperone Asf1b to HSV-1 DNA replication components. Proc Natl Acad Sci U S A 107: 2461–2466. doi: 10.1073/pnas.0911128107
|
[53] | Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM (2009) Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 15: 1312–1317. doi: 10.1038/nm.2051
|
[54] | Narayanan A, Ruyechan WT, Kristie TM (2007) The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proc Natl Acad Sci U S A 104: 10835–10840. doi: 10.1073/pnas.0704351104
|
[55] | Liang Y, Vogel JL, Arbuckle JH, Rai G, Jadhav A, et al. (2013) Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency. Sci Transl Med 5: 167ra5. doi: 10.1126/scitranslmed.3005145
|
[56] | Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W (2003) Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 17: 896–911. doi: 10.1101/gad.252103
|
[57] | Liang Y, Quenelle D, Vogel JL, Mascaro C, Ortega A, et al. (2013) A novel selective LSD1/KDM1A inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency. MBio 4: e00558–12. doi: 10.1128/mbio.00558-12
|
[58] | Cliffe AR, Knipe DM (2008) Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection. J Virol 82: 12030–12038. doi: 10.1128/jvi.01575-08
|
[59] | Kutluay SB, Triezenberg SJ (2009) Regulation of histone deposition on the herpes simplex virus type 1 genome during lytic infection. J Virol 83: 5835–5845. doi: 10.1128/jvi.00219-09
|
[60] | Lukashchuk V, Everett RD (2010) Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 84: 4026–4040. doi: 10.1128/jvi.02597-09
|
[61] | Smith KO (1964) Relationship between the envelope and the infectivity of herpes simplex virus. Proc Soc Exp Biol Med 115: 814–816. doi: 10.3181/00379727-115-29045
|
[62] | Kawai J, Hayashizaki Y (2003) DNA book. Genome Res 13: 1488–1495. doi: 10.1101/gr.914203
|
[63] | Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, et al. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420: 563–573. doi: 10.1038/nature01266
|