The study of HIV-infected “controllers” who are able to maintain low levels of plasma HIV RNA in the absence of antiretroviral therapy (ART) may provide insights for HIV cure and vaccine strategies. Despite maintaining very low levels of plasma viremia, controllers have elevated immune activation and accelerated atherosclerosis. However, the degree to which low-level replication contributes to these phenomena is not known. Sixteen asymptomatic controllers were prospectively treated with ART for 24 weeks. Controllers had a statistically significant decrease in ultrasensitive plasma and rectal HIV RNA levels with ART. Markers of T cell activation/dysfunction in blood and gut mucosa also decreased substantially with ART. Similar reductions were observed in the subset of “elite” controllers with pre-ART plasma HIV RNA levels below conventional assays (<40 copies/mL). These data confirm that HIV replication persists in controllers and contributes to a chronic inflammatory state. ART should be considered for these individuals (ClinicalTrials.gov NCT01025427).
References
[1]
Deeks SG, Walker BD (2007) Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27: 406–416. doi: 10.1016/j.immuni.2007.08.010
[2]
Hubert JB, Burgard M, Dussaix E, Tamalet C, Deveau C, et al. (2000) Natural history of serum HIV-1 RNA levels in 330 patients with a known date of infection. The SEROCO Study Group. Aids 14: 123–131. doi: 10.1097/00002030-200001280-00007
[3]
Madec Y, Boufassa F, Porter K, Meyer L (2005) Spontaneous control of viral load and CD4 cell count progression among HIV-1 seroconverters. Aids 19: 2001–2007. doi: 10.1097/01.aids.0000194134.28135.cd
[4]
Lambotte O, Boufassa F, Madec Y, Nguyen A, Goujard C, et al. (2005) HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis 41: 1053–1056. doi: 10.1086/433188
[5]
Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107: 4781–4789. doi: 10.1182/blood-2005-12-4818
[6]
Saez-Cirion A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, et al. (2007) HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci U S A 104: 6776–6781. doi: 10.1073/pnas.0611244104
[7]
Lichterfeld M, Mou D, Cung TD, Williams KL, Waring MT, et al. (2008) Telomerase activity of HIV-1-specific CD8+ T cells: constitutive up-regulation in controllers and selective increase by blockade of PD ligand 1 in progressors. Blood 112: 3679–3687. doi: 10.1182/blood-2008-01-135442
[8]
Hersperger AR, Martin JN, Shin LY, Sheth PM, Kovacs CM, et al. (2011) Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 117: 3799–3808. doi: 10.1182/blood-2010-12-322727
[9]
Tomescu C, Duh FM, Hoh R, Viviani A, Harvill K, et al. (2012) Impact of protective killer inhibitory receptor/human leukocyte antigen genotypes on natural killer cell and T-cell function in HIV-1-infected controllers. Aids 26: 1869–1878. doi: 10.1097/qad.0b013e32835861b0
[10]
Hatano H, Delwart EL, Norris PJ, Lee TH, Dunn-Williams J, et al. (2009) Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy. J Virol 83: 329–335. doi: 10.1128/jvi.01763-08
[11]
Pereyra F, Palmer S, Miura T, Block BL, Wiegand A, et al. (2009) Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters. J Infect Dis 200: 984–990. doi: 10.1086/605446
[12]
Hunt PW, Brenchley J, Sinclair E, McCune JM, Roland M, et al. (2008) Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis 197: 126–133. doi: 10.1086/524143
[13]
Hunt PW, Landay AL, Sinclair E, Martinson JA, Hatano H, et al. (2011) A low T regulatory cell response may contribute to both viral control and generalized immune activation in HIV controllers. PLoS ONE 6: e15924. doi: 10.1371/journal.pone.0015924
[14]
Hsue PY, Hunt PW, Schnell A, Kalapus SC, Hoh R, et al. (2009) Role of viral replication, antiretroviral therapy, and immunodeficiency in HIV-associated atherosclerosis. Aids 23: 1059–1067. doi: 10.1097/qad.0b013e32832b514b
[15]
Pereyra F, Lo J, Triant VA, Wei J, Buzon MJ, et al. (2012) Increased coronary atherosclerosis and immune activation in HIV-1 elite controllers. Aids 26: 2409–2412. doi: 10.1097/qad.0b013e32835a9950
[16]
Neuhaus J, Jacobs DR Jr, Baker JV, Calmy A, Duprez D, et al. (2010) Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis 201: 1788–1795. doi: 10.1086/652749
[17]
Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, et al. (2008) Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 5: e203. doi: 10.1371/journal.pmed.0050203
[18]
Boulware DR, Hullsiek KH, Puronen CE, Rupert A, Baker JV, et al. (2011) Higher levels of CRP, D-dimer, IL-6, and hyaluronic acid before initiation of antiretroviral therapy (ART) are associated with increased risk of AIDS or death. J Infect Dis 203: 1637–1646. doi: 10.1093/infdis/jir134
[19]
Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, et al. (2012) Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS ONE 7: e44454. doi: 10.1371/journal.pone.0044454
[20]
Amanna IJ, Carlson NE, Slifka MK (2007) Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357: 1903–1915. doi: 10.1056/nejmoa066092
[21]
Cimerman S, Sucupira MC, Lewi DS, Diaz RS (2007) Less sensitive HIV-1 enzyme immunoassay as an adjuvant method for monitoring patients receiving antiretroviral therapy. AIDS Patient Care STDS 21: 100–105. doi: 10.1089/apc.2006.0035
[22]
Yukl SA, Boritz E, Busch M, Bentsen C, Chun T-W, et al. (2013) Challenges in Detecting HIV Persistence during Potentially Curative Interventions: A Study of the Berlin Patient. PLoS Pathog 9: e1003347. doi: 10.1371/journal.ppat.1003347
[23]
Henrich TJ, Hu Z, Li JZ, Sciaranghella G, Busch MP, et al. (2013) Long-Term Reduction in Peripheral Blood HIV Type 1 Reservoirs Following Reduced-Intensity Conditioning Allogeneic Stem Cell Transplantation. Journal of Infectious Diseases 207: 1694–1702. doi: 10.1093/infdis/jit086
[24]
Blankson JN, Bailey JR, Thayil S, Yang HC, Lassen K, et al. (2007) Isolation and Characterization of Replication-Competent HIV-1 from a Subset of Elite Suppressors. J Virol 81: 2508–2518. doi: 10.1128/jvi.02165-06
[25]
Lamine A, Caumont-Sarcos A, Chaix ML, Saez-Cirion A, Rouzioux C, et al. (2007) Replication-competent HIV strains infect HIV controllers despite undetectable viremia (ANRS EP36 study). Aids 21: 1043–1045. doi: 10.1097/qad.0b013e3280d5a7ac
[26]
Mens H, Kearney M, Wiegand A, Shao W, Schonning K, et al. (2010) HIV-1 continues to replicate and evolve in patients with natural control of HIV infection. J Virol 84: 12971–12981. doi: 10.1128/jvi.00387-10
[27]
Graf EH, Mexas AM, Yu JJ, Shaheen F, Liszewski MK, et al. (2011) Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART. PLoS Pathog 7: e1001300. doi: 10.1371/journal.ppat.1001300
[28]
Morse CG, Dodd LE, Nghiem K, Costello R, Csako G, et al. (2013) Elevations in D-dimer and C-reactive protein are associated with the development of osteonecrosis of the hip in HIV-infected adults. Aids 27: 591–595. doi: 10.1097/qad.0b013e32835c206a
[29]
Buzon MJ, Massanella M, Llibre JM, Esteve A, Dahl V, et al. (2010) HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 16: 460–465. doi: 10.1038/nm.2111
[30]
Yukl SA, Shergill AK, McQuaid K, Gianella S, Lampiris H, et al. (2010) Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. Aids 24: 2451–2460. doi: 10.1097/qad.0b013e32833ef7bb
[31]
Llibre JM, Buzon MJ, Massanella M, Esteve A, Dahl V, et al. (2012) Treatment intensification with raltegravir in subjects with sustained HIV-1 viraemia suppression: a randomized 48-week study. Antivir Ther 17: 355–364. doi: 10.3851/imp1917
[32]
Massanella M, Negredo E, Puig J, Puertas MC, Buzon MJ, et al. (2012) Raltegravir intensification shows differing effects on CD8 and CD4 T cells in HIV-infected HAART-suppressed individuals with poor CD4 T-cell recovery. Aids 26: 2285–2293. doi: 10.1097/qad.0b013e328359f20f
[33]
Hatano H, Strain MC, Scherzer R, Bacchetti P, Wentworth D, et al. (2013) Increase in 2-LTR Circles and Decrease in D-dimer After Raltegravir Intensification in Treated HIV-Infected Patients: A Randomized, Placebo-Controlled Trial. J Infect Dis [Epub ahead of print]. doi: 10.1093/infdis/jit453
[34]
Autran B, Carcelain G, Li TS, Blanc C, Mathez D, et al. (1997) Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277: 112–116. doi: 10.1126/science.277.5322.112
[35]
Emu B, Sinclair E, Favre D, Moretto WJ, Hsue P, et al. (2005) Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment. J Virol 79: 14169–14178. doi: 10.1128/jvi.79.22.14169-14178.2005
[36]
Ferre AL, Hunt PW, Critchfield JW, Young DH, Morris MM, et al. (2009) Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood 113: 3978–3989. doi: 10.1182/blood-2008-10-182709
[37]
Ferre AL, Hunt PW, McConnell DH, Morris MM, Garcia JC, et al. (2010) HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ T-cell responses. Journal of virology 84: 11020–11029. doi: 10.1128/jvi.00980-10
[38]
Ferre AL, Lemongello D, Hunt PW, Morris MM, Garcia JC, et al. (2010) Immunodominant HIV-specific CD8+ T-cell responses are common to blood and gastrointestinal mucosa, and Gag-specific responses dominate in rectal mucosa of HIV controllers. J Virol 84: 10354–10365. doi: 10.1128/jvi.00803-10
[39]
Hunt PW, Hatano H, Sinclair E, Lee TH, Busch MP, et al. (2011) HIV-specific CD4+ T cells may contribute to viral persistence in HIV controllers. Clin Infect Dis 52: 681–687. doi: 10.1093/cid/ciq202
[40]
Hatano H, Somsouk M, Sinclair E, Harvill K, Gilman L, et al. (2013) Comparison of HIV DNA and RNA in Gut-associated lymphoid tissue of HIV-Infected Controllers and Non-Controllers. Aids (in press).. doi: 10.1097/qad.0b013e328362692f
[41]
Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, et al. (2003) T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 187: 1534–1543. doi: 10.1086/374786
[42]
Stramer SL, Glynn SA, Kleinman SH, Strong DM, Caglioti S, et al. (2004) Detection of HIV-1 and HCV infections among antibody-negative blood donors by nucleic acid-amplification testing. N Engl J Med 351: 760–768. doi: 10.1056/nejmoa040085
[43]
Stekler J, Swenson PD, Wood RW, Handsfield HH, Golden MR (2005) Targeted screening for primary HIV infection through pooled HIV-RNA testing in men who have sex with men. Aids 19: 1323–1325. doi: 10.1097/01.aids.0000180105.73264.81
[44]
Nugent CT, Dockter J, Bernardin F, Hecht R, Smith D, et al. (2009) Detection of HIV-1 in alternative specimen types using the APTIMA HIV-1 RNA Qualitative Assay. J Virol Methods 159: 10–14. doi: 10.1016/j.jviromet.2009.02.015
[45]
Lelie PN, van Drimmelen HA, Cuypers HT, Best SJ, Stramer SL, et al. (2002) Sensitivity of HCV RNA and HIV RNA blood screening assays. Transfusion 42: 527–536. doi: 10.1046/j.1537-2995.2002.00101.x
[46]
Busch MP, Hecht FM (2005) Nucleic acid amplification testing for diagnosis of acute HIV infection: has the time come? Aids 19: 1317–1319. doi: 10.1097/01.aids.0000180103.65640.d8
[47]
Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, et al. (2003) New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41: 4531–4536. doi: 10.1128/jcm.41.10.4531-4536.2003
[48]
Keating SM, Hanson D, Lebedeva M, Laeyendecker O, Ali-Napo NL, et al. (2012) Lower-sensitivity and avidity modifications of the vitros anti-HIV 1+2 assay for detection of recent HIV infections and incidence estimation. J Clin Microbiol 50: 3968–3976. doi: 10.1128/jcm.01454-12
[49]
Bernardin F, Tobler L, Walsh I, Williams JD, Busch M, et al. (2008) Clearance of hepatitis C virus RNA from the peripheral blood mononuclear cells of blood donors who spontaneously or therapeutically control their plasma viremia. Hepatology 47: 1446–1452. doi: 10.1002/hep.22184
[50]
Lee TH, el-Amad Z, Reis M, Adams M, Donegan EA, et al. (1991) Absence of HIV-1 DNA in high-risk seronegative individuals using high-input polymerase chain reaction. Aids 5: 1201–1207. doi: 10.1097/00002030-199110000-00008
[51]
Lee TH, Paglieroni T, Utter GH, Chafets D, Gosselin RC, et al. (2005) High-level long-term white blood cell microchimerism after transfusion of leukoreduced blood components to patients resuscitated after severe traumatic injury. Transfusion 45: 1280–1290. doi: 10.1111/j.1537-2995.2005.00201.x
[52]
Lee TH, Chafets DM, Reed W, Wen L, Yang Y, et al. (2006) Enhanced ascertainment of microchimerism with real-time quantitative polymerase chain reaction amplification of insertion-deletion polymorphisms. Transfusion 46: 1870–1878. doi: 10.1111/j.1537-2995.2006.00992.x
[53]
Graf EH, O'Doherty U (2013) Quantitation of integrated proviral DNA in viral reservoirs. Curr Opin HIV AIDS 8: 100–105. doi: 10.1097/coh.0b013e32835d8132
[54]
Sinclair E, Tan QX, Sharp M, Girling V, Poon C, et al. (2006) Protective immunity to cytomegalovirus (CMV) retinitis in AIDS is associated with CMV-specific T cells that express interferon- gamma and interleukin-2 and have a CD8+ cell early maturational phenotype. J Infect Dis 194: 1537–1546. doi: 10.1086/508997
[55]
Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, et al. (1999) Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 179: 859–870. doi: 10.1086/314660
[56]
Hunt PW, Cao HL, Muzoora C, Ssewanyana I, Bennett J, et al. (2011) Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. Aids 25: 2123–2131. doi: 10.1097/qad.0b013e32834c4ac1
[57]
Hatano H, Jain V, Hunt PW, Lee T-H, Sinclair E, et al. (2013) Cell-Based Measures of Viral Persistence Are Associated With Immune Activation and Programmed Cell Death Protein 1 (PD-1)–Expressing CD4+ T cells. Journal of Infectious Diseases 208: 50–56. doi: 10.1093/infdis/jis630
[58]
Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, et al. (2008) Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 197: 563–571. doi: 10.1086/526786
[59]
Shacklett BL, Yang O, Hausner MA, Elliott J, Hultin L, et al. (2003) Optimization of methods to assess human mucosal T-cell responses to HIV infection. J Immunol Methods 279: 17–31. doi: 10.1016/s0022-1759(03)00255-2
[60]
Kumar AM, Borodowsky I, Fernandez B, Gonzalez L, Kumar M (2007) Human immunodeficiency virus type 1 RNA Levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction. J Neurovirol 13: 210–224. doi: 10.1080/13550280701327038
[61]
Fischer M, Huber W, Kallivroussis A, Ott P, Opravil M, et al. (1999) Highly sensitive methods for quantitation of human immunodeficiency virus type 1 RNA from plasma, cells, and tissues. J Clin Microbiol 37: 1260–1264.
[62]
Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, et al. (2010) Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis 202: 1553–1561. doi: 10.1086/656722
[63]
Critchfield JW, Lemongello D, Walker DH, Garcia JC, Asmuth DM, et al. (2007) Multifunctional human immunodeficiency virus (HIV) gag-specific CD8+ T-cell responses in rectal mucosa and peripheral blood mononuclear cells during chronic HIV type 1 infection. J Virol 81: 5460–5471. doi: 10.1128/jvi.02535-06
[64]
Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, et al. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281: 65–78. doi: 10.1016/s0022-1759(03)00265-5
[65]
Hatano H, Hayes TL, Dahl V, Sinclair E, Lee TH, et al. (2011) A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response. J Infect Dis 203: 960–968. doi: 10.1093/infdis/jiq138
[66]
Critchfield JW, Young DH, Hayes TL, Braun JV, Garcia JC, et al. (2008) Magnitude and complexity of rectal mucosa HIV-1-specific CD8+ T-cell responses during chronic infection reflect clinical status. PLoS One 3: e3577. doi: 10.1371/journal.pone.0003577
[67]
Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap. London: Chapman and Hall.