Viruses within a family often vary in their cellular tropism and pathogenicity. In many cases, these variations are due to viruses switching their specificity from one cell surface receptor to another. The structural requirements that underlie such receptor switching are not well understood especially for carbohydrate-binding viruses, as methods capable of structure-specificity studies are only relatively recently being developed for carbohydrates. We have characterized the receptor specificity, structure and infectivity of the human polyomavirus BKPyV, the causative agent of polyomavirus-associated nephropathy, and uncover a molecular switch for binding different carbohydrate receptors. We show that the b-series gangliosides GD3, GD2, GD1b and GT1b all can serve as receptors for BKPyV. The crystal structure of the BKPyV capsid protein VP1 in complex with GD3 reveals contacts with two sialic acid moieties in the receptor, providing a basis for the observed specificity. Comparison with the structure of simian virus 40 (SV40) VP1 bound to ganglioside GM1 identifies the amino acid at position 68 as a determinant of specificity. Mutation of this residue from lysine in BKPyV to serine in SV40 switches the receptor specificity of BKPyV from GD3 to GM1 both in vitro and in cell culture. Our findings highlight the plasticity of viral receptor binding sites and form a template to retarget viruses to different receptors and cell types.
References
[1]
Decaprio JA, Garcea RL (2013) A cornucopia of human polyomaviruses. Nat Rev Microbiol 11: 264–276. doi: 10.1038/nrmicro2992
[2]
Gardner SD, Field AM, Coleman DV, Hulme B (1971) New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1: 1253–1257. doi: 10.1016/s0140-6736(71)91776-4
Shinohara T, Matsuda M, Cheng SH, Marshall J, Fujita M, et al. (1993) BK virus infection of the human urinary tract. J Med Virol 41: 301–305. doi: 10.1002/jmv.1890410408
[5]
Nickeleit V, Hirsch HH, Binet IF, Gudat F, Prince O, et al. (1999) Polyomavirus infection of renal allograft recipients: from latent infection to manifest disease. J Am Soc Nephrol 10: 1080–1089.
[6]
Bedi A, Miller CB, Hanson JL, Goodman S, Ambinder RF, et al. (1995) Association of BK virus with failure of prophylaxis against hemorrhagic cystitis following bone marrow transplantation. J Clin Oncol 13: 1103–1109.
[7]
Hirsch HH (2005) BK virus: opportunity makes a pathogen. Clin Infect Dis 41: 354–360. doi: 10.1086/431488
[8]
Seganti L, Mastromarino P, Superti F, Sinibaldi L, Orsi N (1981) Receptors for BK virus on human erythrocytes. Acta Virol 25: 177–181.
[9]
Varki A (2001) Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol Suppl 33: 54–69. doi: 10.1002/ajpa.10018
[10]
Sinibaldi L, Goldoni P, Pietropaolo V, Longhi C, Orsi N (1990) Involvement of gangliosides in the interaction between BK virus and Vero cells. Arch Virol 113: 291–296. doi: 10.1007/bf01316682
[11]
Low JA, Magnuson B, Tsai B, Imperiale MJ (2006) Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 80: 1361–1366. doi: 10.1128/jvi.80.3.1361-1366.2006
[12]
Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, et al. (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22: 4346–4355. doi: 10.1093/emboj/cdg439
[13]
Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, et al. (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354: 278–284. doi: 10.1038/354278a0
[14]
Stehle T, Yan Y, Benjamin TL, Harrison SC (1994) Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369: 160–163. doi: 10.1038/369160a0
[15]
Stehle T, Harrison SC (1997) High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J 16: 5139–5148. doi: 10.1093/emboj/16.16.5139
[16]
Neu U, Woellner K, Gauglitz G, Stehle T (2008) Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci U S A 105: 5219–5224. doi: 10.1073/pnas.0710301105
[17]
Neu U, Maginnis MS, Palma AS, Stroh LJ, Nelson CD, et al. (2010) Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8: 309–319. doi: 10.1016/j.chom.2010.09.004
[18]
Neu U, Hengel H, Blaum BS, Schowalter RM, Macejak D, et al. (2012) Structures of Merkel cell polyomavirus VP1 complexes define a sialic acid binding site required for infection. PLoS Pathog 8: e1002738. doi: 10.1371/journal.ppat.1002738
[19]
Mayer M, Bernd M (1999) Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew Chem Int Ed 38: 1784–1788. doi: 10.1002/(sici)1521-3773(19990614)38:12<1784::aid-anie1784>3.0.co;2-q
[20]
Dugan AS, Gasparovic ML, Tsomaia N, Mierke DF, O'Hara BA, et al. (2007) Identification of amino acid residues in BK virus VP1 that are critical for viability and growth. J Virol 81: 11798–11808. doi: 10.1128/jvi.01316-07
[21]
Muchmore EA, Diaz S, Varki A (1998) A structural difference between the cell surfaces of humans and the great apes. Am J Phys Anthropol 107: 187–198. doi: 10.1002/(sici)1096-8644(199810)107:2<187::aid-ajpa5>3.3.co;2-m
[22]
Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, et al. (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81: 12846–12858. doi: 10.1128/jvi.01311-07
[23]
Merritt EA, Sarfaty S, van den Akker F, L'Hoir C, Martial JA, et al. (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 3: 166–175. doi: 10.1002/pro.5560030202
[24]
Qian M, Tsai B (2010) Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 84: 9840–9852. doi: 10.1128/jvi.01093-10
[25]
Shayman JA, Radin NS (1991) Structure and function of renal glycosphingolipids. Am J Physiol 260: F291–302.
[26]
Holthofer H, Reivinen J, Miettinen A (1994) Nephron segment and cell-type specific expression of gangliosides in the developing and adult kidney. Kidney Int 45: 123–130. doi: 10.1038/ki.1994.14
[27]
Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50 Suppl: S440–445. doi: 10.1194/jlr.r800028-jlr200
[28]
Persson BD, Muller S, Reiter DM, Schmitt BB, Marttila M, et al. (2009) An arginine switch in the species B adenovirus knob determines high-affinity engagement of cellular receptor CD46. J Virol 83: 673–686. doi: 10.1128/jvi.01967-08
Eash S, Atwood WJ (2005) Involvement of cytoskeletal components in BK virus infectious entry. J Virol 79: 11734–11741. doi: 10.1128/jvi.79.18.11734-11741.2005
[32]
Houliston RS, Jacobs BC, Tio-Gillen AP, Verschuuren JJ, Khieu NH, et al. (2009) STD-NMR used to elucidate the fine binding specificity of pathogenic anti-ganglioside antibodies directly in patient serum. Biochemistry 48: 220–222. doi: 10.1021/bi802100u
[33]
Brisson JR, Baumann H, Imberty A, Perez S, Jennings HJ (1992) Helical epitope of the group B meningococcal alpha(2–8)-linked sialic acid polysaccharide. Biochemistry 31: 4996–5004. doi: 10.1021/bi00136a012
[34]
Michon F, Brisson JR, Jennings HJ (1987) Conformational differences between linear alpha (2–8)-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide. Biochemistry 26: 8399–8405. doi: 10.1021/bi00399a055
[35]
Haselhorst T, Blanchard H, Frank M, Kraschnefski MJ, Kiefel MJ, et al. (2007) STD NMR spectroscopy and molecular modeling investigation of the binding of N-acetylneuraminic acid derivatives to rhesus rotavirus VP8* core. Glycobiology 17: 68–81. doi: 10.1093/glycob/cwl051
[36]
Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66: 133–144. doi: 10.1107/s0907444909047374
[37]
CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760–763. doi: 10.1107/s0907444994003112
[38]
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221. doi: 10.1107/s0907444909052925
[39]
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132. doi: 10.1107/s0907444904019158
[40]
Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255. doi: 10.1107/s0907444996012255
[41]
Frank M, Lutteke T, von der Lieth CW (2007) GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucl Acid Res 35: 287–290. doi: 10.1093/nar/gkl907
[42]
Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57: 678–683. doi: 10.1002/prot.20251
[43]
Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, et al. (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281: 5771–5779. doi: 10.1074/jbc.m511461200
[44]
Steinberg SF (2008) Structural basis of protein kinase C isoform function. Physiolog Rev 88: 1341–1378. doi: 10.1152/physrev.00034.2007
[45]
Stoll MS, Feizi T. Software tools for storing, processing and displaying carbohydrate microarray data. In: Kettner C, editor; 2009; Potsdam, Germany. Beilstein Institute for the Advancement of Chemical Sciences.