全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Caspase-1 Promotes Epstein-Barr Virus Replication by Targeting the Large Tegument Protein Deneddylase to the Nucleus of Productively Infected Cells

DOI: 10.1371/journal.ppat.1003664

Full-Text   Cite this paper   Add to My Lib

Abstract:

The large tegument proteins of herpesviruses contain N-terminal cysteine proteases with potent ubiquitin and NEDD8-specific deconjugase activities, but the function of the enzymes during virus replication remains largely unknown. Using as model BPLF1, the homologue encoded by Epstein-Barr virus (EBV), we found that induction of the productive virus cycle does not affect the total level of ubiquitin-conjugation but is accompanied by a BPLF1-dependent decrease of NEDD8-adducts and accumulation of free NEDD8. Expression of BPLF1 promotes cullin degradation and the stabilization of cullin-RING ligases (CRLs) substrates in the nucleus, while cytoplasmic CRLs and their substrates are not affected. The inactivation of nuclear CRLs is reversed by the N-terminus of CAND1, which inhibits the binding of BPLF1 to cullins and prevents efficient viral DNA replication. Targeting of the deneddylase activity to the nucleus is dependent on processing of the catalytic N-terminus by caspase-1. Inhibition of caspase-1 severely impairs viral DNA synthesis and the release of infectious virus, pointing a previously unrecognized role of the cellular response to danger signals triggered by EBV reactivation in promoting virus replication.

References

[1]  Kirkin V, Dikic I (2007) Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19: 199–205. doi: 10.1016/j.ceb.2007.02.002
[2]  van der Veen AG, Ploegh HL (2012) Ubiquitin-like proteins. Annu Rev Biochem 81: 323–357. doi: 10.1146/annurev-biochem-093010-153308
[3]  Ciechanover A, Orian A, Schwartz AL (2000) The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications. J Cell Biochem Suppl 34: 40–51. doi: 10.1002/(sici)1097-4644(2000)77:34+<40::aid-jcb9>3.0.co;2-6
[4]  Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, et al. (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134: 995–1006. doi: 10.1016/j.cell.2008.07.022
[5]  Chiba T, Tanaka K (2004) Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system. Curr Protein Pept Sci 5: 177–184. doi: 10.2174/1389203043379783
[6]  Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, et al. (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538–546. doi: 10.1038/ncb1716
[7]  Gong L, Kamitani T, Millas S, Yeh ET (2000) Identification of a novel isopeptidase with dual specificity for ubiquitin- and NEDD8-conjugated proteins. J Biol Chem 275: 14212–14216. doi: 10.1074/jbc.275.19.14212
[8]  Ferro A, Carvalho AL, Teixeira-Castro A, Almeida C, Tome RJ, et al. (2007) NEDD8: a new ataxin-3 interactor. Biochim Biophys Acta 1773: 1619–1627. doi: 10.1016/j.bbamcr.2007.07.012
[9]  Artavanis-Tsakonas K, Misaghi S, Comeaux CA, Catic A, Spooner E, et al. (2006) Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum. Mol Microbiol 61: 1187–1195. doi: 10.1111/j.1365-2958.2006.05307.x
[10]  Hemelaar J, Borodovsky A, Kessler BM, Reverter D, Cook J, et al. (2004) Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol Cell Biol 24: 84–95. doi: 10.1128/mcb.24.1.84-95.2004
[11]  Drag M, Salvesen GS (2008) DeSUMOylating enzymes–SENPs. IUBMB Life 60: 734–742. doi: 10.1002/iub.113
[12]  Gredmark-Russ S, Isaacson MK, Kattenhorn L, Cheung EJ, Watson N, et al. (2009) A gammaherpesvirus ubiquitin-specific protease is involved in the establishment of murine gammaherpesvirus 68 infection. J Virol 83: 10644–10652. doi: 10.1128/jvi.01017-09
[13]  Shackelford J, Pagano JS (2005) Targeting of host-cell ubiquitin pathways by viruses. Essays Biochem 41: 139–156. doi: 10.1042/eb0410139
[14]  Randow F, Lehner PJ (2009) Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11: 527–534. doi: 10.1038/ncb0509-527
[15]  Balakirev MY, Jaquinod M, Haas AL, Chroboczek J (2002) Deubiquitinating function of adenovirus proteinase. J Virol 76: 6323–6331. doi: 10.1128/jvi.76.12.6323-6331.2002
[16]  Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, et al. (2005) The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol 79: 15189–15198. doi: 10.1128/jvi.79.24.15189-15198.2005
[17]  Kattenhorn LM, Korbel GA, Kessler BM, Spooner E, Ploegh HL (2005) A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol Cell 19: 547–557. doi: 10.1016/j.molcel.2005.07.003
[18]  Sompallae R, Gastaldello S, Hildebrand S, Zinin N, Hassink G, et al. (2008) Epstein-Barr virus encodes three bona fide ubiquitin-specific proteases. J Virol 82: 10477–10486. doi: 10.1128/jvi.01113-08
[19]  Kim ET, Oh SE, Lee YO, Gibson W, Ahn JH (2009) Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. J Virol 83: 12046–12056. doi: 10.1128/jvi.00411-09
[20]  Wang J, Loveland AN, Kattenhorn LM, Ploegh HL, Gibson W (2006) High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its active-site cysteine or histidine are viable. J Virol 80: 6003–6012. doi: 10.1128/jvi.00401-06
[21]  Jarosinski K, Kattenhorn L, Kaufer B, Ploegh H, Osterrieder N (2007) A herpesvirus ubiquitin-specific protease is critical for efficient T cell lymphoma formation. Proc Natl Acad Sci U S A 104: 20025–20030. doi: 10.1073/pnas.0706295104
[22]  Bottcher S, Maresch C, Granzow H, Klupp BG, Teifke JP, et al. (2008) Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo. J Virol 82: 6009–6016. doi: 10.1128/jvi.00280-08
[23]  Ernst R, Claessen JH, Mueller B, Sanyal S, Spooner E, et al. (2011) Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS Biol 8: e1000605. doi: 10.1371/journal.pbio.1000605
[24]  Sanyal S, Claessen JH, Ploegh HL (2012) A viral deubiquitylating enzyme restores dislocation of substrates from the endoplasmic reticulum (ER) in semi-intact cells. J Biol Chem 287: 23594–23603. doi: 10.1074/jbc.m112.365312
[25]  Bheda A, Yue W, Gullapalli A, Whitehurst C, Liu R, et al. (2009) Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and beta-catenin/TCF signaling. PLoS One 4: e5955. doi: 10.1371/journal.pone.0005955
[26]  Whitehurst CB, Vaziri C, Shackelford J, Pagano JS (2012) Epstein-Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase eta recruitment to DNA damage sites. J Virol 86: 8097–8106. doi: 10.1128/jvi.00588-12
[27]  Saito S, Murata T, Kanda T, Isomura H, Narita Y, et al. (2013) Epstein-Barr Virus Deubiquitinase Down-regulates TRAF6-mediated NF-kappaB Signaling during Productive Replication. J Virol 87: 4060–4070. doi: 10.1128/jvi.02020-12
[28]  Gastaldello S, Hildebrand S, Faridani O, Callegari S, Palmkvist M, et al. (2010) A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Nat Cell Biol 12: 351–361. doi: 10.1038/ncb2035
[29]  Gastaldello S, Callegari S, Coppotelli G, Hildebrand S, Song M, et al. (2012) Herpes virus deneddylases interrupt the cullin-RING ligase neddylation cycle by inhibiting the binding of CAND1. J Mol Cell Biol 4: 242–251. doi: 10.1093/jmcb/mjs012
[30]  De Sepulveda P, Ilangumaran S, Rottapel R (2000) Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J Biol Chem 275: 14005–14008. doi: 10.1074/jbc.c000106200
[31]  Ivan M, Kondo K, Yang H, Kim W, Valiando J, et al. (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468. doi: 10.1126/science.1059817
[32]  Schipke J, Pohlmann A, Diestel R, Binz A, Rudolph K, et al. (2012) The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus. J Virol 86: 3682–3700. doi: 10.1128/jvi.06432-11
[33]  Matsushima K, Kuang YD, Tosato G, Hopkins SJ, Oppenheim JJ (1985) B-cell-derived interleukin 1 (IL-1)-like factor. I. Relationship of production of IL-1-like factor to accessory cell function of Epstein-Barr virus-transformed human B-lymphoblast lines. Cell Immunol 94: 406–417. doi: 10.1016/0008-8749(85)90264-3
[34]  Matsushima K, Tosato G, Benjamin D, Oppenheim JJ (1985) B-cell-derived interleukin-1 (IL-1)-like factor. II. Sources, effects, and biochemical properties. Cell Immunol 94: 418–426. doi: 10.1016/0008-8749(85)90265-5
[35]  Whitehurst CB, Ning S, Bentz GL, Dufour F, Gershburg E, et al. (2009) The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 83: 4345–4353. doi: 10.1128/jvi.02195-08
[36]  Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, et al. (2013) Cand1 Promotes Assembly of New SCF Complexes through Dynamic Exchange of F Box Proteins. Cell 153: 206–215. doi: 10.1016/j.cell.2013.02.024
[37]  Gonzalez CM, Wang L, Damania B (2009) Kaposi's sarcoma-associated herpesvirus encodes a viral deubiquitinase. J Virol 83: 10224–10233. doi: 10.1128/jvi.00589-09
[38]  Gredmark S, Schlieker C, Quesada V, Spooner E, Ploegh HL (2007) A functional ubiquitin-specific protease embedded in the large tegument protein (ORF64) of murine gammaherpesvirus 68 is active during the course of infection. J Virol 81: 10300–10309. doi: 10.1128/jvi.01149-07
[39]  Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28: 137–161. doi: 10.1146/annurev-cellbio-101011-155745
[40]  Vande Walle L, Lamkanfi M (2011) Inflammasomes: caspase-1-activating platforms with critical roles in host defense. Front Microbiol 2: 3. doi: 10.3389/fmicb.2011.00003
[41]  Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126: 1135–1145. doi: 10.1016/j.cell.2006.07.033
[42]  Gram AM, Frenkel J, Ressing ME (2012) Inflammasomes and viruses: cellular defence versus viral offence. J Gen Virol 93: 2063–2075. doi: 10.1099/vir.0.042978-0
[43]  Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, et al. (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124: 1283–1298. doi: 10.1016/j.cell.2006.01.040
[44]  Guerreiro-Cacais AO, Uzunel M, Levitskaya J, Levitsky V (2007) Inhibition of heavy chain and beta2-microglobulin synthesis as a mechanism of major histocompatibility complex class I downregulation during Epstein-Barr virus replication. J Virol 81: 1390–1400. doi: 10.1128/jvi.01999-06
[45]  Miller G, Shope T, Lisco H, Stitt D, Lipman M (1972) Epstein-Barr virus: transformation, cytopathic changes, and viral antigens in squirrel monkey and marmoset leukocytes. Proc Natl Acad Sci U S A 69: 383–387. doi: 10.1073/pnas.69.2.383
[46]  Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, et al. (2001) A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20: 5187–5196. doi: 10.1093/emboj/20.18.5187
[47]  Backes C, Kuentzer J, Lenhof HP, Comtesse N, Meese E (2005) GraBCas: a bioinformatics tool for score-based prediction of Caspase- and Granzyme B-cleavage sites in protein sequences. Nucleic Acids Res 33: 208–213. doi: 10.1093/nar/gki433

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133