全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ISG15 Regulates Peritoneal Macrophages Functionality against Viral Infection

DOI: 10.1371/journal.ppat.1003632

Full-Text   Cite this paper   Add to My Lib

Abstract:

Upon viral infection, the production of type I interferon (IFN) and the subsequent upregulation of IFN stimulated genes (ISGs) generate an antiviral state with an important role in the activation of innate and adaptive host immune responses. The ubiquitin-like protein (UBL) ISG15 is a critical IFN-induced antiviral molecule that protects against several viral infections, but the mechanism by which ISG15 exerts its antiviral function is not completely understood. Here, we report that ISG15 plays an important role in the regulation of macrophage responses. ISG15?/? macrophages display reduced activation, phagocytic capacity and programmed cell death activation in response to vaccinia virus (VACV) infection. Moreover, peritoneal macrophages from mice lacking ISG15 are neither able to phagocyte infected cells nor to block viral infection in co-culture experiments with VACV-infected murine embryonic fibroblast (MEFs). This phenotype is independent of cytokine production and secretion, but clearly correlates with impaired activation of the protein kinase AKT in ISG15 knock-out (KO) macrophages. Altogether, these results indicate an essential role of ISG15 in the cellular immune antiviral response and point out that a better understanding of the antiviral responses triggered by ISG15 may lead to the development of therapies against important human pathogens.

References

[1]  Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834–839. doi: 10.1038/ncb1038
[2]  Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8: 559–568. doi: 10.1038/nri2314
[3]  Au WC, Moore PA, Lowther W, Juang YT, Pitha PM (1995) Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc Natl Acad Sci U S A 92: 11657–11661. doi: 10.1073/pnas.92.25.11657
[4]  Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM (2005) Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A 102: 10200–10205. doi: 10.1073/pnas.0504754102
[5]  D'Cunha J, Knight E Jr, Haas AL, Truitt RL, Borden EC (1996) Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci U S A 93: 211–215. doi: 10.1073/pnas.93.1.211
[6]  Recht M, Borden EC, Knight E Jr (1991) A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma. J Immunol 147: 2617–2623.
[7]  Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, et al. (2007) IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A 104: 1371–1376. doi: 10.1073/pnas.0607038104
[8]  Giannakopoulos NV, Arutyunova E, Lai C, Lenschow DJ, Haas AL, et al. (2009) ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus. J Virol 83: 1602–1610. doi: 10.1128/jvi.01590-08
[9]  Kim JH, Luo JK, Zhang DE (2008) The level of hepatitis B virus replication is not affected by protein ISG15 modification but is reduced by inhibition of UBP43 (USP18) expression. J Immunol 181: 6467–6472. doi: 10.4049/jimmunol.181.9.6467
[10]  Guerra S, Caceres A, Knobeloch KP, Horak I, Esteban M (2008) Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog 4: e1000096. doi: 10.1371/journal.ppat.1000096
[11]  Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, et al. (2004) Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat Med 10: 1374–1378. doi: 10.1038/nm1133
[12]  Knobeloch KP, Utermohlen O, Kisser A, Prinz M, Horak I (2005) Reexamination of the role of ubiquitin-like modifier ISG15 in the phenotype of UBP43-deficient mice. Mol Cell Biol 25: 11030–11034. doi: 10.1128/mcb.25.24.11030-11034.2005
[13]  Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP (2005) ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol Cell Biol 25: 6338–6345. doi: 10.1128/mcb.25.15.6338-6345.2005
[14]  Moore EC, Barber J, Tripp RA (2008) Respiratory syncytial virus (RSV) attachment and nonstructural proteins modify the type I interferon response associated with suppressor of cytokine signaling (SOCS) proteins and IFN-stimulated gene-15 (ISG15). Virol J 5: 116. doi: 10.1186/1743-422x-5-116
[15]  Okumura A, Lu G, Pitha-Rowe I, Pitha PM (2006) Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci U S A 103: 1440–1445. doi: 10.1073/pnas.0510518103
[16]  Okumura A, Pitha PM, Harty RN (2008) ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci U S A 105: 3974–3979. doi: 10.1073/pnas.0710629105
[17]  Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, et al. (2011) ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog 7: e1002322. doi: 10.1371/journal.ppat.1002322
[18]  Lai C, Struckhoff JJ, Schneider J, Martinez-Sobrido L, Wolff T, et al. (2009) Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J Virol 83: 1147–1151. doi: 10.1128/jvi.00105-08
[19]  Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, et al. (2005) Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun 336: 496–506. doi: 10.1016/j.bbrc.2005.08.132
[20]  Durfee LA, Lyon N, Seo K, Huibregtse JM (2010) The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol Cell 38: 722–732. doi: 10.1016/j.molcel.2010.05.002
[21]  Okumura F, Okumura AJ, Uematsu K, Hatakeyama S, Zhang DE, et al. (2012) Activation of double-stranded RNA-activated protein kinase (PKR) by interferon stimulated gene 15 (ISG15) modification down-regulates protein translation. J Biol Chem 288 ((4)): 2839–47. doi: 10.1074/jbc.m112.401851
[22]  Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, et al. (2003) High-throughput immunoblotting. Ubiquitiin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278: 16608–16613. doi: 10.1074/jbc.m208435200
[23]  Malakhova OA, Zhang DE (2008) ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J Biol Chem 283: 8783–8787. doi: 10.1074/jbc.c800030200
[24]  Kim MJ, Yoo JY (2010) Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A. J Immunol 185: 4311–4318. doi: 10.4049/jimmunol.1000098
[25]  Bratosin D, Mazurier J, Slomianny C, Aminoff D, Montreuil J (1997) Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages. Cytometry 30: 269–274. doi: 10.1002/(sici)1097-0320(19971015)30:5<269::aid-cyto8>3.3.co;2-d
[26]  Tang Y, Zhong G, Zhu L, Liu X, Shan Y, et al. (2010) Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J Immunol 184: 5777–5790. doi: 10.4049/jimmunol.0903588
[27]  Zhao C, Hsiang TY, Kuo RL, Krug RM (2010) ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc Natl Acad Sci U S A 107: 2253–2258. doi: 10.1073/pnas.0909144107
[28]  Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, et al. (2012) Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337: 1684–1688. doi: 10.1126/science.1224026
[29]  Melkova Z, Esteban M (1994) Interferon-gamma severely inhibits DNA synthesis of vaccinia virus in a macrophage cell line. Virology 198: 731–735. doi: 10.1006/viro.1994.1087
[30]  Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7: 321–328. doi: 10.1006/excr.2001.5293
[31]  Marti-Lliteras P, Regueiro V, Morey P, Hood DW, Saus C, et al. (2009) Nontypeable Haemophilus influenzae clearance by alveolar macrophages is impaired by exposure to cigarette smoke. Infect Immun 77: 4232–4242. doi: 10.1128/iai.00305-09
[32]  Hsiang TY, Zhao C, Krug RM (2009) Interferon-induced ISG15 conjugation inhibits influenza A virus gene expression and replication in human cells. J Virol 83: 5971–5977. doi: 10.1128/jvi.01667-08
[33]  Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17: 593–623. doi: 10.1146/annurev.immunol.17.1.593
[34]  Au WC, Moore PA, LaFleur DW, Tombal B, Pitha PM (1998) Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes. J Biol Chem 273: 29210–29217. doi: 10.1074/jbc.273.44.29210
[35]  Skaug B, Chen ZJ (2010) Emerging role of ISG15 in antiviral immunity. Cell 143: 187–190. doi: 10.1016/j.cell.2010.09.033
[36]  Barber GN (2001) Host defense, viruses and apoptosis. Cell Death Differ 8: 113–126. doi: 10.1038/sj.cdd.4400823
[37]  Teodoro JG, Branton PE (1997) Regulation of apoptosis by viral gene products. J Virol 71: 1739–1746.
[38]  Joffre OPSE, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12: 557–569. doi: 10.1038/nri3254
[39]  Smith KG, Clatworthy MR (2010) FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 10: 328–343. doi: 10.1038/nri2762
[40]  Hemmings BA, Restuccia DF (2012) PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 4: a011189. doi: 10.1101/cshperspect.a011189
[41]  Li E, Stupack D, Klemke R, Cheresh DA, Nemerow GR (1998) Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol 72: 2055–2061.
[42]  Kierbel A, Gassama-Diagne A, Mostov K, Engel JN (2005) The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol Biol Cell 16: 2577–2585. doi: 10.1091/mbc.e04-08-0717
[43]  Dunn EF, Connor JH (2012) HijAkt: The PI3K/Akt pathway in virus replication and pathogenesis. Prog Mol Biol Transl Sci 106: 223–250.
[44]  Izmailyan RHJ, Chung CS, Chen CH, Hsu PW, Liao CL, et al. (2012) Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 86: 10. doi: 10.1128/jvi.06860-11
[45]  Kaur S, Sassano A, Dolniak B, Joshi S, Majchrzak-Kita B, et al. (2008) Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc Natl Acad Sci U S A 105: 4808–4813. doi: 10.1073/pnas.0710907105
[46]  Deretic V, Singh S, Master S, Harris J, Roberts E, et al. (2006) Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol 8: 719–727. doi: 10.1111/j.1462-5822.2006.00705.x
[47]  Guerra S, Lopez-Fernandez LA, Pascual-Montano A, Munoz M, Harshman K, et al. (2003) Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J Virol 77: 6493–6506. doi: 10.1128/jvi.77.11.6493-6506.2003
[48]  Arakawa Y, Cordeiro JV, Schleich S, Newsome TP, Way M (2007) The release of vaccinia virus from infected cells requires RhoA-mDia modulation of cortical actin. Cell Host Microbe 1: 227–240. doi: 10.1016/j.chom.2007.04.006
[49]  Tobita K, Sugiura A, Enomote C, Furuyama M (1975) Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med Microbiol Immunol 162: 9–14. doi: 10.1007/bf02123572
[50]  Guerra S, Aracil M, Conde R, Bernad A, Esteban M (2005) Wiskott-Aldrich syndrome protein is needed for vaccinia virus pathogenesis. J Virol 79: 2133–2140. doi: 10.1128/jvi.79.4.2133-2140.2005
[51]  Garcia MA, Guerra S, Gil J, Jimenez V, Esteban M (2002) Anti-apoptotic and oncogenic properties of the dsRNA-binding protein of vaccinia virus, E3L. Oncogene 21: 8379–8387. doi: 10.1038/sj.onc.1206036
[52]  Fujimoto I, Pan J, Takizawa T, Nakanishi Y (2000) Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol 74: 3399–3403. doi: 10.1128/jvi.74.7.3399-3403.2000
[53]  Cordeiro JV, Guerra S, Arakawa Y, Dodding MP, Esteban M, et al. (2009) F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS One 4: e8506. doi: 10.1371/journal.pone.0008506

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133