全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Unique SUMO-2-Interacting Motif within LANA Is Essential for KSHV Latency

DOI: 10.1371/journal.ppat.1003750

Full-Text   Cite this paper   Add to My Lib

Abstract:

Kaposi's sarcoma-associated herpesvirus (KSHV) stabilizes hypoxia-inducible factor α (HIF-1α) during latent infection, and HIF-1α reactivates lytic replication under hypoxic stress. However, the mechanism utilized by KSHV to block lytic reactivation with the accumulation of HIF-1α in latency remains unclear. Here, we report that LANA encoded by KSHV contains a unique SUMO-interacting motif (LANASIM) which is specific for interaction with SUMO-2 and facilitates LANA SUMOylation at lysine 1140. Proteomic and co-immunoprecipitation analysis further reveal that the SUMO-2 modified transcription repressor KAP1 is a critical factor recruited by LANASIM. Deletion of LANASIM led to functional loss of both LANA-mediated viral episome maintenance and lytic gene silencing. Moreover, hypoxia reduced KAP1 SUMOylation and resulted in dissociation of both KAP1 and Sin3A repressors from LANASIM-associated complex. Therefore, the LANASIM motif plays an essential role in KSHV latency and is a potential drug target against KSHV-associated cancers.

References

[1]  Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, et al. (1995) Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86: 1276–1280.
[2]  Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266: 1865–1869. doi: 10.1126/science.7997879
[3]  Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, et al. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93: 14862–14867. doi: 10.1073/pnas.93.25.14862
[4]  Cai Q, Verma SC, Lu J, Robertson ES (2010) Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 78: 87–142. doi: 10.1016/b978-0-12-385032-4.00003-3
[5]  Mesri EA, Cesarman E, Boshoff C (2010) Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 10: 707–719. doi: 10.1038/nrc2888
[6]  Verma SC, Lan K, Robertson E (2007) Structure and function of latency-associated nuclear antigen. Curr Top Microbiol Immunol 312: 101–136. doi: 10.1007/978-3-540-34344-8_4
[7]  Lukac DM, Renne R, Kirshner JR, Ganem D (1998) Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252: 304–312. doi: 10.1006/viro.1998.9486
[8]  Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, et al. (2003) Global changes in Kaposi's sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol 77: 4205–4220. doi: 10.1128/jvi.77.7.4205-4220.2003
[9]  Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, et al. (1998) A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95: 10866–10871. doi: 10.1073/pnas.95.18.10866
[10]  Xu Y, AuCoin DP, Huete AR, Cei SA, Hanson LJ, et al. (2005) A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol 79: 3479–3487. doi: 10.1128/jvi.79.6.3479-3487.2005
[11]  Hassman LM, Ellison TJ, Kedes DH (2011) KSHV infects a subset of human tonsillar B cells, driving proliferation and plasmablast differentiation. J Clin Invest 121: 752–768. doi: 10.1172/jci44185
[12]  McAllister SC, Moses AV (2007) Endothelial cell- and lymphocyte-based in vitro systems for understanding KSHV biology. Curr Top Microbiol Immunol 312: 211–244. doi: 10.1007/978-3-540-34344-8_8
[13]  Ganem D (2006) KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol 1: 273–296. doi: 10.1146/annurev.pathol.1.110304.100133
[14]  Hockel M, Schlenger K, Hockel S, Aral B, Schaffer U, et al. (1998) Tumor hypoxia in pelvic recurrences of cervical cancer. Int J Cancer 79: 365–369. doi: 10.1002/(sici)1097-0215(19980821)79:4<365::aid-ijc10>3.3.co;2-1
[15]  Stadler P, Becker A, Feldmann HJ, Hansgen G, Dunst J, et al. (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44: 749–754. doi: 10.1016/s0360-3016(99)00115-7
[16]  Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, et al. (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157: 411–421. doi: 10.1016/s0002-9440(10)64554-3
[17]  Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549.
[18]  Cai Q, Lan K, Verma SC, Si H, Lin D, et al. (2006) Kaposi's sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol 80: 7965–7975. doi: 10.1128/jvi.00689-06
[19]  Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, et al. (2001) Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97: 3244–3250. doi: 10.1182/blood.v97.10.3244
[20]  Cai Q, Murakami M, Si H, Robertson ES (2007) A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi's sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia. J Virol 81: 10413–10423. doi: 10.1128/jvi.00611-07
[21]  Carroll PA, Kenerson HL, Yeung RS, Lagunoff M (2006) Latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors. J Virol 80: 10802–10812. doi: 10.1128/jvi.00673-06
[22]  Cai Q, Verma SC, Kumar P, Ma M, Robertson ES (2010) Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS One 5: e9720. doi: 10.1371/journal.pone.0009720
[23]  Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, et al. (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131: 309–323. doi: 10.1016/j.cell.2007.07.044
[24]  Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131: 584–595. doi: 10.1016/j.cell.2007.08.045
[25]  van Hagen M, Overmeer RM, Abolvardi SS, Vertegaal AC (2010) RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha. Nucleic Acids Res 38: 1922–1931. doi: 10.1093/nar/gkp1157
[26]  Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4: 690–699. doi: 10.1038/nrm1200
[27]  Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654–12659. doi: 10.1074/jbc.m009476200
[28]  Sramko M, Markus J, Kabat J, Wolff L, Bies J (2006) Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem 281: 40065–40075. doi: 10.1074/jbc.m609404200
[29]  Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252–6258. doi: 10.1074/jbc.275.9.6252
[30]  Guo D, Li M, Zhang Y, Yang P, Eckenrode S, et al. (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36: 837–841. doi: 10.1038/ng1391
[31]  Minty A, Dumont X, Kaghad M, Caput D (2000) Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275: 36316–36323. doi: 10.1074/jbc.m004293200
[32]  Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101: 14373–14378. doi: 10.1073/pnas.0403498101
[33]  Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, et al. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102–4110. doi: 10.1074/jbc.m413209200
[34]  Li Z, Wang D, Na X, Schoen SR, Messing EM, et al. (2003) The VHL protein recruits a novel KRAB-A domain protein to repress HIF-1alpha transcriptional activity. Embo J 22: 1857–1867. doi: 10.1093/emboj/cdg173
[35]  He F, Li L, Kim D, Wen B, Deng X, et al. (2007) Adenovirus-mediated expression of a dominant negative Ku70 fragment radiosensitizes human tumor cells under aerobic and hypoxic conditions. Cancer Res 67: 634–642. doi: 10.1158/0008-5472.can-06-1860
[36]  Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, et al. (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21: 1297–1310. doi: 10.1128/mcb.21.4.1297-1310.2001
[37]  Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, et al. (2002) Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci U S A 99: 5367–5372. doi: 10.1073/pnas.082117899
[38]  Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, et al. (2003) P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11: 1043–1054. doi: 10.1016/s1097-2765(03)00141-2
[39]  Kuo HY, Chang CC, Jeng JC, Hu HM, Lin DY, et al. (2005) SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci U S A 102: 16973–16978. doi: 10.1073/pnas.0504460102
[40]  Pungaliya P, Kulkarni D, Park HJ, Marshall H, Zheng H, et al. (2007) TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins. J Proteome Res 6: 3918–3923. doi: 10.1021/pr0703674
[41]  Li X, Lin HH, Chen H, Xu X, Shih HM, et al. (2010) SUMOylation of the transcriptional co-repressor KAP1 is regulated by the serine and threonine phosphatase PP1. Sci Signal 3: ra32. doi: 10.1126/scisignal.2000781
[42]  Garber AC, Shu MA, Hu J, Renne R (2001) DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 75: 7882–7892. doi: 10.1128/jvi.75.17.7882-7892.2001
[43]  Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, et al. (1997) Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 71: 314–324.
[44]  Cai QL, Knight JS, Verma SC, Zald P, Robertson ES (2006) EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2: e116. doi: 10.1371/journal.ppat.0020116
[45]  Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15: 536–541. doi: 10.1016/j.gde.2005.07.004
[46]  Hay RT (2005) SUMO: a history of modification. Mol Cell 18: 1–12. doi: 10.1016/j.molcel.2005.03.012
[47]  Hofmann H, Floss S, Stamminger T (2000) Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol 74: 2510–2524. doi: 10.1128/jvi.74.6.2510-2524.2000
[48]  Wu YC, Roark AA, Bian XL, Wilson VG (2008) Modification of papillomavirus E2 proteins by the small ubiquitin-like modifier family members (SUMOs). Virology 378: 329–338. doi: 10.1016/j.virol.2008.06.008
[49]  Adamson AL, Kenney S (2001) Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75: 2388–2399. doi: 10.1128/jvi.75.5.2388-2399.2001
[50]  Chang PC, Izumiya Y, Wu CY, Fitzgerald LD, Campbell M, et al. (2010) Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. J Biol Chem 285: 5266–5273. doi: 10.1074/jbc.m109.088088
[51]  Izumiya Y, Ellison TJ, Yeh ET, Jung JU, Luciw PA, et al. (2005) Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 79: 9912–9925. doi: 10.1128/jvi.79.15.9912-9925.2005
[52]  Yang SH, Galanis A, Witty J, Sharrocks AD (2006) An extended consensus motif enhances the specificity of substrate modification by SUMO. Embo J 25: 5083–5093. doi: 10.1038/sj.emboj.7601383
[53]  Campbell M, Izumiya Y (2012) Post-Translational Modifications of Kaposi's Sarcoma-Associated Herpesvirus Regulatory Proteins - SUMO and KSHV. Front Microbiol 3: 31. doi: 10.3389/fmicb.2012.00031
[54]  Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, et al. (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10: 2067–2078. doi: 10.1101/gad.10.16.2067
[55]  Le Douarin B, Nielsen AL, Garnier JM, Ichinose H, Jeanmougin F, et al. (1996) A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. Embo J 15: 6701–6715.
[56]  Underhill C, Qutob MS, Yee SP, Torchia J (2000) A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem 275: 40463–40470. doi: 10.1074/jbc.m007864200
[57]  Sripathy SP, Stevens J, Schultz DC (2006) The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 26: 8623–8638. doi: 10.1128/mcb.00487-06
[58]  Ivanov AV, Peng H, Yurchenko V, Yap KL, Negorev DG, et al. (2007) PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 28: 823–837. doi: 10.1016/j.molcel.2007.11.012
[59]  Li X, Lee YK, Jeng JC, Yen Y, Schultz DC, et al. (2007) Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J Biol Chem 282: 36177–36189. doi: 10.1074/jbc.m706912200
[60]  Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, et al. (2006) Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 8: 870–876. doi: 10.1038/ncb1446
[61]  Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89: 357–364. doi: 10.1016/s0092-8674(00)80216-0
[62]  Chang PC, Fitzgerald LD, Van Geelen A, Izumiya Y, Ellison TJ, et al. (2009) Kruppel-associated box domain-associated protein-1 as a latency regulator for Kaposi's sarcoma-associated herpesvirus and its modulation by the viral protein kinase. Cancer Res 69: 5681–5689. doi: 10.1158/0008-5472.can-08-4570
[63]  Wei F, Zaprazna K, Wang J, Atchison ML (2009) PU.1 can recruit BCL6 to DNA to repress gene expression in germinal center B cells. Mol Cell Biol 29: 4612–4622. doi: 10.1128/mcb.00234-09
[64]  Bai Y, Srinivasan L, Perkins L, Atchison ML (2005) Protein acetylation regulates both PU.1 transactivation and Ig kappa 3′ enhancer activity. J Immunol 175: 5160–5169. doi: 10.4049/jimmunol.175.8.5160
[65]  Si H, Verma SC, Lampson MA, Cai Q, Robertson ES (2008) Kaposi's sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J Virol 82: 6734–6746. doi: 10.1128/jvi.00342-08

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133