全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2012 

Parietal Cortex Signals Come Unstuck in Time

DOI: 10.1371/journal.pbio.1001414

Full-Text   Cite this paper   Add to My Lib

Abstract:

Humans and other animals are surprisingly adept at estimating the duration of temporal intervals, even without the use of watches and clocks. This ability is typically studied in the lab by asking observers to indicate their estimate of the time between two external sensory events. The results of such studies confirm that humans can accurately estimate durations on a variety of time scales. Although many brain areas are thought to contribute to the representation of elapsed time, recent neurophysiological studies have linked the parietal cortex in particular to the perception of sub-second time intervals. In this Primer, we describe previous work on parietal cortex and time perception, and we highlight the findings of a study published in this issue of PLOS Biology, in which Schneider and Ghose [1] characterize single-neuron responses during performance of a novel “Temporal Production” task. During temporal production, the observer must track the passage of time without anticipating any external sensory event, and it appears that the parietal cortex may use a unique strategy to support this type of measurement.

References

[1]  Schneider B, Ghose GM (2012) Temporal production signals in parietal cortex. PLoS Biol 10: e1001413 doi:10.1371/journal.pbio.1001413.
[2]  Brunner D, Kacelnik A, Gibbon J (1992) Optimalforaging and timing processes in the starling, Sturnus vulgaris: effect of inter-capture interval. Animal Behaviour 44: 597–613. doi: 10.1016/s0003-3472(05)80289-1
[3]  James W (1886) The perception of time. Journal of Speculative Philosophy 20: 374–407.
[4]  Treisman M (1963) Temporal discrimination and the indifference interval. Implications for a model of the “internal clock”. Psychol Monogr 77: 1–31. doi: 10.1037/h0093864
[5]  Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6: 755–765. doi: 10.1038/nrn1764
[6]  Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38: 317–327. doi: 10.1016/s0896-6273(03)00185-5
[7]  Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31: 3805–3812. doi: 10.1523/jneurosci.5561-10.2011
[8]  Jin DZ, Fujii N, Graybiel AM (2009) Neural representation of time in cortico-basal ganglia circuits. Proc Natl Acad Sci U S A 106: 19156–19161. doi: 10.1073/pnas.0909881106
[9]  Hazeltine E, Helmuth LL, Ivry RB (1997) Neural mechanisms of timing. Trends Cogn Sci 1: 163–169. doi: 10.1016/s1364-6613(97)01058-9
[10]  Genovesio A, Tsujimoto S, Wise SP (2006) Neuronal activity related to elapsed time in prefrontal cortex. J Neurophysiol 95: 3281–3285. doi: 10.1152/jn.01011.2005
[11]  Buonomano DV, Laje R (2010) Population clocks: motor timing with neural dynamics. Trends Cogn Sci 14: 520–527. doi: 10.1016/j.tics.2010.09.002
[12]  Artieda J, Pastor MA, Lacruz F, Obeso JA (1992) Temporal discrimination is abnormal in Parkinson's disease. Brain 115 Pt 1: 199–210. doi: 10.1093/brain/115.1.199
[13]  Manto M (1996) Pathophysiology of cerebellar dysmetria: the imbalance between the agonist and the antagonist electromyographic activities. Eur Neurol 36: 333–337. doi: 10.1159/000117289
[14]  Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4: 317–323. doi: 10.1038/85191
[15]  Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27: 307–340. doi: 10.1146/annurev.neuro.27.070203.144247
[16]  Lewis PA, Miall RC (2003) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13: 250–255. doi: 10.1016/s0959-4388(03)00036-9
[17]  Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14: 225–232. doi: 10.1016/j.conb.2004.03.013
[18]  Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72: 561–582. doi: 10.3758/app.72.3.561
[19]  Carroll CA, Boggs J, O'Donnell BF, Shekhar A, Hetrick WP (2008) Temporal processing dysfunction in schizophrenia. Brain Cogn 67: 150–161. doi: 10.1016/j.bandc.2007.12.005
[20]  Kiehl KA, Liddle PF (2001) An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophr Res 48: 159–171. doi: 10.1016/s0920-9964(00)00117-1
[21]  Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30: 535–574. doi: 10.1146/annurev.neuro.29.051605.113038
[22]  Mineault PJ, Khawaja FA, Butts DA, Pack CC (2012) Hierarchical processing of complex motion along the primate dorsal visual pathway. Proc Natl Acad Sci U S A 109: E972–980. doi: 10.1073/pnas.1115685109
[23]  Pruszynski JA, Kurtzer I, Nashed JY, Omrani M, Brouwer B, et al. (2011) Primary motor cortex underlies multi-joint integration for fast feedback control. Nature 478: 387–390. doi: 10.1038/nature10436
[24]  van Wetter SM, van Opstal AJ (2008) Perisaccadic mislocalization of visual targets by head-free gaze shifts: visual or motor? J Neurophysiol 100: 1848–1867. doi: 10.1152/jn.90276.2008
[25]  Janssen P, Shadlen MN (2005) A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8: 234–241. doi: 10.1038/nn1386
[26]  Maimon G, Assad JA (2006) A cognitive signal for the proactive timing of action in macaque LIP. Nat Neurosci 9: 948–955. doi: 10.1038/nn1716
[27]  Colby CL, Duhamel JR, Goldberg ME (1996) Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol 76: 2841–2852.
[28]  Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400: 233–238. doi: 10.1038/22268
[29]  Hering E (1964) Outlines of a Theory of the Light Sense. Cambridge, Mass.: Harvard University Press.
[30]  Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys 9: 311–338, 311-375, 428-338. doi: 10.1017/s0033583500002523
[31]  Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural integrators in perceptual decision making. Cereb Cortex 13: 1257–1269. doi: 10.1093/cercor/bhg097

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133