全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Paleovirology—Modern Consequences of Ancient Viruses

DOI: 10.1371/journal.pbio.1000301

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Katzourakis A, Rambaut A, Pybus O. G (2005) The evolutionary dynamics of endogenous retroviruses. Trends Microbiol 13: 463–468.
[2]  Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, et al. (2004) Long-term reinfection of the human genome by endogenous retroviruses. Proc Natl Acad Sci U S A 101: 4894–4899.
[3]  Bannert N, Kurth R (2006) The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet 7: 149–173.
[4]  Salemi M, Desmyter J, Vandamme A. M (2000) Tempo and mode of human and simian T-lymphotropic virus (HTLV/STLV) evolution revealed by analyses of full-genome sequences. Mol Biol Evol 17: 374–386.
[5]  Brady T, Lee Y. N, Ronen K, Malani N, Berry C. C, et al. (2009) Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev 23: 633–642.
[6]  Medstrand P, van de Lagemaat L. N, Mager D. L (2002) Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res 12: 1483–1495.
[7]  Gifford R. J, Katzourakis A, Tristem M, Pybus O. G, Winters M, et al. (2008) A transitional endogenous lentivirus from the genome of a basal primate and implications for lentivirus evolution. Proc Natl Acad Sci U S A 105: 20362–20367.
[8]  Gilbert C, Maxfield D. G, Goodman S. M, Feschotte C (2009) Parallel germline infiltration of a lentivirus in two Malagasy lemurs. PLoS Genet 5: e1000425.
[9]  Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T, et al. (2010) Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463: 84–87.
[10]  Switzer W. M, Salemi M, Shanmugam V, Gao F, Cong M. E, et al. (2005) Ancient co-speciation of simian foamy viruses and primates. Nature 434: 376–380.
[11]  Gottschling M, Stamatakis A, Nindl I, Stockfleth E, Alonso A, et al. (2007) Multiple evolutionary mechanisms drive papillomavirus diversification. Mol Biol Evol 24: 1242–1258.
[12]  Sharp P. M (2002) Origins of human virus diversity. Cell 108: 305–312.
[13]  Holmes E. C (2008) Evolutionary history and phylogeography of human viruses. Annu Rev Microbiol 62: 307–328.
[14]  Hughes A. L, Friedman R (2005) Poxvirus genome evolution by gene gain and loss. Mol Phylogenet Evol 35: 186–195.
[15]  Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci U S A 104: 12046–12051.
[16]  Wang N, Baldi P. F, Gaut B. S (2007) Phylogenetic analysis, genome evolution and the rate of gene gain in the Herpesviridae. Mol Phylogenet Evol 43: 1066–1075.
[17]  Holmes E. C (2004) Adaptation and immunity. PLoS Biol 2: E307.
[18]  Sawyer S. L, Wu L. I, Emerman M, Malik H. S (2005) Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci U S A 102: 2832–2837.
[19]  Kerns J. A, Emerman M, Malik H. S (2008) Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet 4: e21.
[20]  OhAinle M, Kerns J. A, Li M. M, Malik H. S, Emerman M (2008) Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4: 249–259.
[21]  Elde N. C, Child S. J, Geballe A. P, Malik H. S (2009) Protein kinase R reveals an evolutionary model for defeating viral mimicry. Nature 457: 485–489.
[22]  Ribeiro I. P, Menezes A. N, Moreira M. A, Bonvicino C. R, Seuanez H. N, et al. (2005) Evolution of cyclophilin A and TRIMCyp retrotransposition in New World primates. J Virol 79: 14998–15003.
[23]  Sayah D. M, Sokolskaja E, Berthoux L, Luban J (2004) Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430: 569–573.
[24]  Sabeti P. C, Schaffner S. F, Fry B, Lohmueller J, Varilly P, et al. (2006) Positive natural selection in the human lineage. Science 312: 1614–1620.
[25]  Sabeti P. C, Varilly P, Fry B, Lohmueller J, Hostetter E, et al. (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449: 913–918.
[26]  Worobey M, Bjork A, Wertheim J. O (2007) Point, counterpoint: The evolution of pathogenic viruses and their human hosts. Annual Review of Ecology Evolution and Systematics 38: 515–540.
[27]  Yohn C. T, Jiang Z, McGrath S. D, Hayden K. E, Khaitovich P, et al. (2005) Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans. PLoS Biol 3: e110.
[28]  Lacoste V, Mauclere P, Dubreuil G, Lewis J, Georges-Courbot M. C, et al. (2001) A novel gamma 2-herpesvirus of the Rhadinovirus 2 lineage in chimpanzees. Genome Res 11: 1511–1519.
[29]  Linial M (2007) Foamy Viruses. In: Knipe D, Howley P. M, editors. Fields Virology. 5th ed. Philadelphia: Lippincott Williams and Wilkins. pp. 2245–2262.
[30]  Goldschmidt V, Ciuffi A, Ortiz M, Brawand D, Munoz M, et al. (2008) Antiretroviral activity of ancestral TRIM5alpha. J Virol 82: 2089–2096.
[31]  Venkataraman N, Cole A. L, Ruchala P, Waring A. J, Lehrer R. I, et al. (2009) Reawakening retrocyclins: ancestral human defensins active against HIV-1. PLoS Biol 7: e95.
[32]  Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, et al. (2006) Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16: 1548–1556.
[33]  Kaiser S. M, Malik H. S, Emerman M (2007) Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein. Science 316: 1756–1758.
[34]  Lee Y. N, Bieniasz P. D (2007) Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 3: e10.
[35]  Perez-Caballero D, Soll S. J, Bieniasz P. D (2008) Evidence for restriction of ancient primate gammaretroviruses by APOBEC3 but not TRIM5alpha proteins. PLoS Pathog 4: e1000181.
[36]  Tumpey T. M, Basler C. F, Aguilar P. V, Zeng H, Solorzano A, et al. (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310: 77–80.
[37]  Wolfe N. D, Dunavan C. P, Diamond J (2007) Origins of major human infectious diseases. Nature 447: 279–283.
[38]  Hon C. C, Lam T. Y, Shi Z. L, Drummond A. J, Yip C. W, et al. (2008) Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol 82: 1819–1826.
[39]  Wertheim J. O, Worobey M (2009) Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. PLoS Comput Biol 5: e1000377.
[40]  Holmes E. C, Twiddy S. S (2003) The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol 3: 19–28.
[41]  Li Y, Carroll D. S, Gardner S. N, Walsh M. C, Vitalis E. A, et al. (2007) On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc Natl Acad Sci U S A 104: 15787–15792.
[42]  Belshaw R, Dawson A. L, Woolven-Allen J, Redding J, Burt A, et al. (2005) Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. J Virol 79: 12507–12514.
[43]  Blikstad V, Benachenhou F, Sperber G. O, Blomberg J (2008) Evolution of human endogenous retroviral sequences: a conceptual account. Cell Mol Life Sci 65: 3348–3365.
[44]  Takahata N, Satta Y (1997) Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc Natl Acad Sci U S A 94: 4811–4815.
[45]  Diaz-Griffero F, Perron M, McGee-Estrada K, Hanna R, Maillard P. V, et al. (2008) A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus. Virology 378: 233–242.
[46]  Maillard P. V, Reynard S, Serhan F, Turelli P, Trono D (2007) Interfering residues narrow the spectrum of MLV restriction by human TRIM5alpha. PLoS Pathog 3: e200.
[47]  Song B, Gold B, O'Huigin C, Javanbakht H, Li X, et al. (2005) The B30.2(SPRY) domain of the retroviral restriction factor TRIM5alpha exhibits lineage-specific length and sequence variation in primates. J Virol 79: 6111–6121.
[48]  Stremlau M, Perron M, Welikala S, Sodroski J (2005) Species-specific variation in the B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency virus restriction. J Virol 79: 3139–3145.
[49]  Yap M. W, Nisole S, Stoye J. P (2005) A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr Biol 15: 73–78.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133