全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Discovery of Unique Lanthionine Synthetases Reveals New Mechanistic and Evolutionary Insights

DOI: 10.1371/journal.pbio.1000339

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lantibiotic synthetases are remarkable biocatalysts generating conformationally constrained peptides with a variety of biological activities by repeatedly utilizing two simple posttranslational modification reactions: dehydration of Ser/Thr residues and intramolecular addition of Cys thiols to the resulting dehydro amino acids. Since previously reported lantibiotic synthetases show no apparent homology with any other known protein families, the molecular mechanisms and evolutionary origin of these enzymes are unknown. In this study, we present a novel class of lanthionine synthetases, termed LanL, that consist of three distinct catalytic domains and demonstrate in vitro enzyme activity of a family member from Streptomyces venezuelae. Analysis of individually expressed and purified domains shows that LanL enzymes install dehydroamino acids via phosphorylation of Ser/Thr residues by a protein kinase domain and subsequent elimination of the phosphate by a phosphoSer/Thr lyase domain. The latter has sequence homology with the phosphothreonine lyases found in various pathogenic bacteria that inactivate host mitogen activated protein kinases. A LanC-like cyclase domain then catalyzes the addition of Cys residues to the dehydro amino acids to form the characteristic thioether rings. We propose that LanL enzymes have evolved from stand-alone protein Ser/Thr kinases, phosphoSer/Thr lyases, and enzymes catalyzing thiol alkylation. We also demonstrate that the genes for all three pathways to lanthionine-containing peptides are widespread in Nature. Given the remarkable efficiency of formation of lanthionine-containing polycyclic peptides and the latter's high degree of specificity for their cognate cellular targets, it is perhaps not surprising that (at least) three distinct families of polypeptide sequences have evolved to access this structurally and functionally diverse class of compounds.

References

[1]  Walsh C. T (2003) Antibiotics: actions, origins, resistance. Washington DC: ASM Press.
[2]  Willey J. M, van der Donk W. A (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61: 477–501.
[3]  Chatterjee C, Paul M, Xie L, van der Donk W. A (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105: 633–684.
[4]  Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5: 321–332.
[5]  M?rki F, Hanni E, Fredenhagen A, van Oostrum J (1991) Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem Pharmacol 42: 2027–2035.
[6]  Lubelski J, Rink R, Khusainov R, Moll G. N, Kuipers O. P (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65: 455–476.
[7]  Pag U, Sahl H. G (2002) Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des 8: 815–833.
[8]  Xie L, Miller L. M, Chatterjee C, Averin O, Kelleher N. L, et al. (2004) Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity. Science 303: 679–681.
[9]  Siezen R. J, Kuipers O. P, de Vos W. M (1996) Comparison of lantibiotic gene clusters and encoded proteins. Antonie van Leeuwenhoek 69: 171–184.
[10]  Okeley N. M, Paul M, Stasser J. P, Blackburn N, van der Donk W. A (2003) SpaC and NisC, the cyclases involved in subtilin and nisin biosynthesis, are zinc proteins. Biochemistry 42: 13613–13624.
[11]  Li B, Yu J-P. J, Brunzelle J. S, Moll G. N, van der Donk W. A, et al. (2006) Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311: 1464–1467.
[12]  Li B, van der Donk W. A (2007) Identification of essential catalytic residues of the cyclase NisC involved in the biosynthesis of nisin. J Biol Chem 282: 21169–21175.
[13]  Paul M, Patton G. C, van der Donk W. A (2007) Mutants of the zinc ligands of lacticin 481 synthetase retain dehydration activity but have impaired cyclization activity. Biochemistry 46: 6268–6276.
[14]  Widdick D. A, Dodd H. M, Barraille P, White J, Stein T. H, et al. (2003) Cloning and engineering of the cinnamycin biosynthetic gene cluster from Streptomyces cinnamoneus cinnamoneus DSM 40005. Proc Natl Acad Sci U S A 100: 4316–4321.
[15]  Boakes S, Cortés J, Appleyard A. N, Rudd B. A, Dawson M. J (2009) Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol Microbiol 72: 1126–1136.
[16]  Hutchinson C. R, Decker H, Madduri K, Otten S. L, Tang L (1993) Genetic control of polyketide biosynthesis in the genus Streptomyces. Antonie van Leeuwenhoek 64: 165–176.
[17]  Oman T. J, van der Donk W. A (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6: 9–18.
[18]  Kodani S, Hudson M. E, Durrant M. C, Buttner M. J, Nodwell J. R, et al. (2004) The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A 101: 11448–11453.
[19]  Hudson M. E, Zhang D, Nodwell J. R (2002) Membrane association and kinase-like motifs of the RamC protein of Streptomyces coelicolor. J Bacteriol 184: 4920–4924.
[20]  Li H, Xu H, Zhou Y, Zhang J, Long C, et al. (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315: 1000–1003.
[21]  Zhu Y, Li H, Long C, Hu L, Xu H, et al. (2007) Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol Cell 28: 899–913.
[22]  Chen L, Wang H, Zhang J, Gu L, Huang N, et al. (2008) Structural basis for the catalytic mechanism of phosphothreonine lyase. Nat Struct Mol Biol 15: 101–102.
[23]  Brennan D. F, Barford D (2009) Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases. Trends Biochem Sci 34: 108–114.
[24]  McClerren A. L, Cooper L. E, Quan C, Thomas P. M, Kelleher N. L, et al. (2006) Discovery and in vitro biosynthesis of haloduracin, a new two-component lantibiotic. Proc Natl Acad Sci U S A 103: 17243–17248.
[25]  Lawton E. M, Cotter P. D, Hill C, Ross R. P (2007) Identification of a novel two-peptide lantibiotic, Haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267: 64–71.
[26]  Fredenhagen A, Maerki F, Fendrich G, Maerki W, Gruner J, et al. (1991) Duramycin B and C, two new lanthionine-containing antibiotics as inhibitors of phospholipase A2, and structural revision of duramycin and cinnamycin. In: Jung G, Sahl H-G, editors. Nisin and novel lantibiotics. Leiden, The Netherlands: ESCOM. pp. 131–140.
[27]  H?varstein L. S, Diep D. B, Nes I. F (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16: 229–240.
[28]  Hanks S. K, Quinn A. M, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.
[29]  Begley M, Cotter P. D, Hill C, Ross R. P (2009) Rational genome mining for LanM proteins leads to the identification of a novel two peptide lantibiotic, lichenicidin. Appl Environ Microbiol.
[30]  Chatterjee C, Miller L. M, Leung Y. L, Xie L, Yi M, et al. (2005) Lacticin 481 synthetase phosphorylates its substrate during lantibiotic production. J Am Chem Soc 127: 15332–15333.
[31]  You Y. O, van der Donk W. A (2007) Mechanistic investigations of the dehydration reaction of lacticin 481 synthetase using site-directed mutagenesis. Biochemistry 46: 5991–6000.
[32]  Zhu Y, Gieselman M, Zhou H, Averin O, van der Donk W. A (2003) Biomimetic studies on the mechanism of stereoselective lanthionine formation. Org Biomol Chem 1: 3304–3315.
[33]  Hightower K. E, Fierke C. A (1999) Zinc-catalyzed sulfur alkylation: insights from protein farnesyltransferase. Curr Opin Chem Biol 3: 176–181.
[34]  Penner-Hahn J (2007) Zinc-promoted alkyl transfer: a new role for zinc. Curr Opin Chem Biol 11: 166–171.
[35]  Kodani S, Lodato M. A, Durrant M. C, Picart F, Willey J. M (2005) SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes. Mol Microbiol 58: 1368–1380.
[36]  Schnell N, Entian K. D, Schneider U, Gotz F, Zahner H, et al. (1988) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333: 276–278.
[37]  Keiser T, Bibb M. J, Buttner M. J, Chater K. F, Hopwood D. A (2000) Practical Streptomyces genetics. Norwich: The John Innes Foundation.
[38]  Cole J. R, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133