In Bilateria, many axons cross the midline of the central nervous system, forming well-defined commissures. Whereas in mammals the functions of commissures in the forebrain and in the visual system are well established, functions at other axial levels are less clearly understood. Here, we have dissected the function of several hindbrain commissures using genetic methods. By taking advantage of multiple Cre transgenic lines, we have induced site-specific deletions of the Robo3 receptor. These lines developed with the disruption of specific commissures in the sensory, motor, and sensorimotor systems, resulting in severe and permanent functional deficits. We show that mice with severely reduced commissures in rhombomeres 5 and 3 have abnormal lateral eye movements and auditory brainstem responses, respectively, whereas mice with a primarily uncrossed climbing fiber/Purkinje cell projection are strongly ataxic. Surprisingly, although rerouted axons remain ipsilateral, they still project to their appropriate neuronal targets. Moreover, some Cre;Robo3 lines represent potential models that can be used to study human syndromes, including horizontal gaze palsy with progressive scoliosis (HGPPS). To our knowledge, this study is one of the first to link defects in commissural axon guidance with specific cellular and behavioral phenotypes.
References
[1]
Lindwall C, Fothergill T, Richards L. J (2007) Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 17: 3–14.
[2]
Williams S. E, Mason C. A, Herrera E (2004) The optic chiasm as a midline choice point. Curr Opin Neurobiol 14: 51–60.
[3]
Sperry R (1982) Some effects of disconnecting the cerebral hemispheres. Science 217: 1223–1226.
[4]
Buchwald J. S, Huang C (1975) Far-field acoustic response: origins in the cat. Science 189: 382–384.
[5]
Goodman C. S (1994) The likeness of being: phylogenetically conserved molecular mechanisms of growth cone guidance. Cell 78: 353–356.
[6]
Dickson B. J, Senti K. A (2002) Axon guidance: growth cones make an unexpected turn. Curr Biol 12: R218–220.
[7]
Yang L, Garbe D. S, Bashaw G. J (2009) A frazzled/DCC-dependent transcriptional switch regulates midline axon guidance. Science 324: 944–947.
[8]
Marillat V, Sabatier C, Failli V, Matsunaga E, Sotelo C, et al. (2004) The slit receptor Rig-1/Robo3 controls midline crossing by hindbrain precerebellar neurons and axons. Neuron 43: 69–79.
[9]
Sabatier C, Plump A. S, Le M, Brose K, Tamada A, et al. (2004) The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117: 157–169.
[10]
Yuan S. S, Cox L. A, Dasika G. K, Lee E. Y (1999) Cloning and functional studies of a novel gene aberrantly expressed in RB-deficient embryos. Dev Biol 207: 62–75.
[11]
Bosley T. M, Salih M. A, Jen J. C, Lin D. D, Oystreck D, et al. (2005) Neurologic features of horizontal gaze palsy and progressive scoliosis with mutations in ROBO3. Neurology 64: 1196–1203.
[12]
Jen J. C, Chan W. M, Bosley T. M, Wan J, Carr J. R, et al. (2004) Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304: 1509–1513.
[13]
Haller S, Wetzel S. G, Lutschg J (2008) Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis. Neuroradiology 50: 453–459.
[14]
Amoiridis G, Tzagournissakis M, Christodoulou P, Karampekios S, Latsoudis H, et al. (2006) Patients with horizontal gaze palsy and progressive scoliosis due to ROBO3 E319K mutation have both uncrossed and crossed central nervous system pathways and perform normally on neuropsychological testing. J Neurol Neurosurg Psychiatry 77: 1047–1053.
[15]
Engle E. C (2007) Oculomotility disorders arising from disruptions in brainstem motor neuron development. Arch Neurol 64: 633–637.
[16]
Voiculescu O, Charnay P, Schneider-Maunoury S (2000) Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis 26: 123–126.
[17]
Clarke J. D, Lumsden A (1993) Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118: 151–162.
[18]
Wilson J. M, Hartley R, Maxwell D. J, Todd A. J, Lieberam I, et al. (2005) Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J Neurosci 25: 5710–5719.
[19]
Stahl J. S, van Alphen A. M, De Zeeuw C. I (2000) A comparison of video and magnetic search coil recordings of mouse eye movements. J Neurosci Methods 99: 101–110.
[20]
van Alphen A. M, Stahl J. S, De Zeeuw C. I (2001) The dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response. Brain Res 890: 296–305.
[21]
Cant N. B, Benson C. G (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60: 457–474.
[22]
Howell D. M, Morgan W. J, Jarjour A. A, Spirou G. A, Berrebi A. S, et al. (2007) Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus. J Comp Neurol 504: 533–549.
[23]
Farago A. F, Awatramani R. B, Dymecki S. M (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50: 205–218.
[24]
Hsieh C. Y, Hong C. T, Cramer K. S (2007) Deletion of EphA4 enhances deafferentation-induced ipsilateral sprouting in auditory brainstem projections. J Comp Neurol 504: 508–518.
[25]
Delmaghani S, del Castillo F. J, Michel V, Leibovici M, Aghaie A, et al. (2006) Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38: 770–778.
[26]
Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald R. J, et al. (2002) The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet 32: 128–134.
[27]
Cendelin J, Korelusova I, Vozeh F (2008) The effect of repeated rotarod training on motor skills and spatial learning ability in Lurcher mutant mice. Behav Brain Res 189: 65–74.
[28]
Wilson D. B (1976) Histological defects in the cerebellum of adult lurcher (Lc) mice. J Neuropathol Exp Neurol 35: 40–45.
[29]
Van Der Giessen R. S, Koekkoek S. K, van Dorp S, De Gruijl J. R, Cupido A, et al. (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58: 599–612.
[30]
Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, et al. (2005) A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3: e159. doi:10.1371/journal.pbio.0030159.
[31]
Yamada M, Terao M, Terashima T, Fujiyama T, Kawaguchi Y, et al. (2007) Origin of climbing fiber neurons and their developmental dependence on Ptf1a. J Neurosci 27: 10924–10934.
[32]
Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10: 507–518.
[33]
Birgbauer E, Fraser S. E (1994) Violation of cell lineage restriction compartments in the chick hindbrain. Development 120: 1347–1356.
[34]
Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427: 522–545.
[35]
Song M. R, Shirasaki R, Cai C. L, Ruiz E. C, Evans S. M, et al. (2006) T-Box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development 133: 4945–4955.
[36]
Barber M, Di Meglio T, Andrews W. D, Hernandez-Miranda L. R, Murakami F, et al. (2009) The role of Robo3 in the development of cortical interneurons. Cereb Cortex 19: i22–i31.
[37]
Chen Z, Gore B. B, Long H, Ma L, Tessier-Lavigne M (2008) Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 58: 325–332.
[38]
Burgess H. A, Johnson S. L, Granato M (2009) Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav 8: 500–511.
[39]
Irving R, Harrison J. M (1967) The superior olivary complex and audition: a comparative study. J Comp Neurol 130: 77–86.
[40]
Melcher J. R, Kiang N. Y (1996) Generators of the brainstem auditory evoked potential in cat. III: identified cell populations. Hear Res 93: 52–71.
[41]
De Zeeuw C. I, Koekkoek S. K. E, van Alphen A. M, Luo C, Hoebeek F, van der Steen J, et al. (2004) Gain and phase control of compensatory eye movements by the vestibulo-cerebellar system. In: Highstein S. M, Fay R. R, Popper A. N, editors. The Vestibular System. New York (New York): Springer. pp. 375–421.
[42]
Shirasaki R, Katsumata R, Murakami F (1998) Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279: 105–107.
[43]
Stein E, Tessier-Lavigne M (2001) Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291: 1928–1938.
[44]
Zou Y, Stoeckli E, Chen H, Tessier-Lavigne M (2000) Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102: 363–375.
[45]
Brittis P. A, Lu Q, Flanagan J. G (2002) Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110: 223–235.
[46]
Marillat V, Cases O, Nguyen-Ba-Charvet K. T, Tessier-Lavigne M, Sotelo C, et al. (2002) Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 442: 130–155.
[47]
Li S, Qiu F, Xu A, Price S. M, Xiang M (2004) Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. J Neurosci 24: 3104–3114.
[48]
Serafini T, Kennedy T. E, Galko M. J, Mirzayan C, Jessell T. M, et al. (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78: 409–424.
[49]
Charron F, Stein E, Jeong J, McMahon A. P, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113: 11–23.