全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Irradiation Selects for p53-Deficient Hematopoietic Progenitors

DOI: 10.1371/journal.pbio.1000324

Full-Text   Cite this paper   Add to My Lib

Abstract:

Identification and characterization of mutations that drive cancer evolution constitute a major focus of cancer research. Consequently, dominant paradigms attribute the tumorigenic effects of carcinogens in general and ionizing radiation in particular to their direct mutagenic action on genetic loci encoding oncogenes and tumor suppressor genes. However, the effects of irradiation are not limited to genetic loci that encode oncogenes and tumor suppressors, as irradiation induces a multitude of other changes both in the cells and their microenvironment which could potentially affect the selective effects of some oncogenic mutations. P53 is a key tumor suppressor, the loss of which can provide resistance to multiple genotoxic stimuli, including irradiation. Given that p53 null animals develop T-cell lymphomas with high penetrance and that irradiation dramatically accelerates lymphoma development in p53 heterozygous mice, we hypothesized that increased selection for p53-deficient cells contributes to the causal link between irradiation and induction of lymphoid malignancies. We sought to determine whether ionizing irradiation selects for p53-deficient hematopoietic progenitors in vivo using mouse models. We found that p53 disruption does not provide a clear selective advantage within an unstressed hematopoietic system or in previously irradiated BM allowed to recover from irradiation. In contrast, upon irradiation p53 disruption confers a dramatic selective advantage, leading to long-term expansion of p53-deficient clones and to increased lymphoma development. Selection for cells with disrupted p53 appears to be attributable to several factors: protection from acute irradiation-induced ablation of progenitor cells, prevention of irradiation-induced loss of clonogenic capacity for stem and progenitor cells, improved long-term maintenance of progenitor cell fitness, and the disabling/elimination of competing p53 wild-type progenitors. These studies indicate that the carcinogenic effect of ionizing irradiation can in part be explained by increased selection for cells with p53 disruption, which protects progenitor cells both from immediate elimination and from long-term reductions in fitness following irradiation.

References

[1]  Little J. B (2000) Radiation carcinogenesis. Carcinogenesis 21: 397–404.
[2]  Finch S. C (2007) Radiation-induced leukemia: lessons from history. Best Pract Res Clin Haematol 20: 109–118.
[3]  Proctor R. N (2001) Tobacco and the global lung cancer epidemic. Nat Rev Cancer 1: 82–86.
[4]  Weinberg R. A (2007) The biology of cancer (Chapter 11). New York: Garland Science.
[5]  Blagosklonny M. V (2005) Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ 12: 592–602.
[6]  Thilly W. G (2003) Have environmental mutagens caused oncomutations in people? Nat Genet 34: 255–259.
[7]  Marusyk A, DeGregori J (2008) Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations. Biochim Biophys Acta 1785: 1–11.
[8]  Laconi E, Doratiotto S, Vineis P (2008) The microenvironments of multistage carcinogenesis. Semin Cancer Biol 18: 322–329.
[9]  Merlo L. M, Pepper J. W, Reid B. J, Maley C. C (2006) Cancer as an evolutionary and ecological process. Nat Rev Cancer 6: 924–935.
[10]  Barcellos-Hoff M. H, Park C, Wright E. G (2005) Radiation and the microenvironment - tumorigenesis and therapy. Nat Rev Cancer 5: 867–875.
[11]  Wallace-Brodeur R. R, Lowe S. W (1999) Clinical implications of p53 mutations. Cell Mol Life Sci 55: 64–75.
[12]  Lowe S. W, Schmitt E. M, Smith S. W, Osborne B. A, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes [see comments]. Nature 362: 847–849.
[13]  Clarke A. R, Purdie C. A, Harrison D. J, Morris R. G, Bird C. C, et al. (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852.
[14]  Lee J. M, Bernstein A (1993) p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A 90: 5742–5746.
[15]  Lotem J, Sachs L (1993) Hematopoietic cells from mice deficient in wild-type p53 are more resistant to induction of apoptosis by some agents. Blood 82: 1092–1096.
[16]  Cui Y. F, Zhou P. K, Woolford L. B, Lord B. I, Hendry J. H, et al. (1995) Apoptosis in bone marrow cells of mice with different p53 genotypes after gamma-rays irradiation in vitro. J Environ Pathol Toxicol Oncol 14: 159–163.
[17]  Wang L, Cui Y, Lord B. I, Roberts S. A, Potten C. S, et al. (1996) Gamma-ray-induced cell killing and chromosome abnormalities in the bone marrow of p53-deficient mice. Radiat Res 146: 259–266.
[18]  Westphal C. H, Hoyes K. P, Canman C. E, Huang X, Kastan M. B, et al. (1998) Loss of atm radiosensitizes multiple p53 null tissues. Cancer Res 58: 5637–5639.
[19]  Brown J. M, Attardi L. D (2005) Opinion: the role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5: 231–237.
[20]  Harvey M, McArthur M. J, Montgomery C. A Jr, Butel J. S, Bradley A, et al. (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 5: 225–229.
[21]  Jacks T, Remington L, Williams B. O, Schmitt E. M, Halachmi S, et al. (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.
[22]  Donehower L. A, Harvey M, Slagle B. L, McArthur M. J, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356: 215–221.
[23]  Kemp C. J, Wheldon T, Balmain A (1994) p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat Genet 8: 66–69.
[24]  Lowe S. W, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432: 307–315.
[25]  Gottlieb E, Haffner R, von Ruden T, Wagner E. F, Oren M (1994) Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3-dependent hematopoietic cells following IL-3 withdrawal. Embo J 13: 1368–1374.
[26]  Marusyk A, Wheeler L. J, Mathews C. K, DeGregori J (2007) p53 mediates senescence-like arrest induced by chronic replicational stress. Mol Cell Biol 27: 5336–5351.
[27]  Kiaris H, Chatzistamou I, Trimis G, Frangou-Plemmenou M, Pafiti-Kondi A, et al. (2005) Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Res 65: 1627–1630.
[28]  Hill R, Song Y, Cardiff R. D, Van Dyke T (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123: 1001–1011.
[29]  Schaefer B. C, Schaefer M. L, Kappler J. W, Marrack P, Kedl R. M (2001) Observation of antigen-dependent CD8(+) T-cell/dendritic cell interactions in vivo. Cell Immunol 214: 110–122.
[30]  Yilmaz O. H, Kiel M. J, Morrison S. J (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107: 924–930.
[31]  Purton L. E, Scadden D. T (2007) Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell 1: 263–270.
[32]  Marusyk A, Casas-Selves M, Henry C. J, Zaberezhnyy V, Klawitter J, et al. (2009) Irradiation alters selection for oncogenic mutations in hematopoietic progenitors. Cancer Res 69: 7262–7269.
[33]  Wang Y, Schulte B. A, LaRue A. C, Ogawa M, Zhou D (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107: 358–366.
[34]  Wright D. E, Wagers A. J, Gulati A. P, Johnson F. L, Weissman I. L (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294: 1933–1936.
[35]  Lodish H, Berk A, Kaiser C, Krieger M, Scott M, et al. (2008) Molecular cell biology (Chapter 25). New York: W. H. Freeman and Company.
[36]  Brown J. M, Wouters B. G (1999) Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59: 1391–1399.
[37]  Christophorou M. A, Ringshausen I, Finch A. J, Swigart L. B, Evan G. I (2006) The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443: 214–217.
[38]  Hinkal G, Parikh N, Donehower L. A (2009) Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS One 4: e6654. doi:10.1371/journal.pone.0006654.
[39]  Junttila M. R, Evan G. I (2009) p53–a Jack of all trades but master of none. Nat Rev Cancer 9: 821–829.
[40]  Meek D. W (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9: 714–723.
[41]  Bouffler S. D, Kemp C. J, Balmain A, Cox R (1995) Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res 55: 3883–3889.
[42]  Jonason A. S, Kunala S, Price G. J, Restifo R. J, Spinelli H. M, et al. (1996) Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U S A 93: 14025–14029.
[43]  Mudgil A. V, Segal N, Andriani F, Wang Y, Fusenig N. E, et al. (2003) Ultraviolet B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression. J Invest Dermatol 121: 191–197.
[44]  Zhang W, Remenyik E, Zelterman D, Brash D. E, Wikonkal N. M (2001) Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc Natl Acad Sci U S A 98: 13948–13953.
[45]  Zhang W, Hanks A. N, Boucher K, Florell S. R, Allen S. M, et al. (2005) UVB-induced apoptosis drives clonal expansion during skin tumor development. Carcinogenesis 26: 249–257.
[46]  Graeber T. G, Osmanian C, Jacks T, Housman D. E, Koch C. J, et al. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours [see comments]. Nature 379: 88–91.
[47]  Schmitt C. A, Fridman J. S, Yang M, Baranov E, Hoffman R. M, et al. (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1: 289–298.
[48]  Brash D. E, Rudolph J. A, Simon J. A, Lin A, McKenna G. J, et al. (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A 88: 10124–10128.
[49]  Pollock P. M, Pearson J. V, Hayward N. K (1996) Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosomes Cancer 15: 77–88.
[50]  Giglia-Mari G, Sarasin A (2003) TP53 mutations in human skin cancers. Hum Mutat 21: 217–228.
[51]  Bilousova G, Marusyk A, Porter C. C, Cardiff R. D, DeGregori J (2005) Impaired DNA replication within progenitor cell pools promotes leukemogenesis. PLoS Biology 3: e401. doi:10.1371/journal.pbio.0030401.
[52]  Laconi S, Pani P, Pillai S, Pasciu D, Sarma D. S, et al. (2001) A growth-constrained environment drives tumor progression in vivo. Proc Natl Acad Sci U S A 98: 7806–7811.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133