[1] | Welsh D. K, Logothetis D. E, Meister M, Reppert S. M (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697–706.
|
[2] | Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, et al. (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119: 693–705.
|
[3] | Welsh D. K, Yoo S. H, Liu A. C, Takahashi J. S, Kay S. A (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14: 2289–2295.
|
[4] | Yoo S. H, Yamazaki S, Lowrey P. L, Shimomura K, Ko C. H, et al. (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101: 5339–5346.
|
[5] | Lowrey P. L, Takahashi J. S (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5: 407–441.
|
[6] | Takahashi J. S, Hong H. K, Ko C. H, McDearmon E. L (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9: 764–775.
|
[7] | Bunger M. K, Wilsbacher L. D, Moran S. M, Clendenin C, Radcliffe L. A, et al. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103: 1009–1017.
|
[8] | Gekakis N, Staknis D, Nguyen H. B, Davis F. C, Wilsbacher L. D, et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564–1569.
|
[9] | King D. P, Zhao Y, Sangoram A. M, Wilsbacher L. D, Tanaka M, et al. (1997) Positional cloning of the mouse circadian Clock gene. Cell 89: 641–653.
|
[10] | Kume K, Zylka M. J, Sriram S, Shearman L. P, Weaver D. R, et al. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193–205.
|
[11] | Lee C, Etchegaray J. P, Cagampang F. R, Loudon A. S, Reppert S. M (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107: 855–867.
|
[12] | Becker-Weimann S, Wolf J, Herzel H, Kramer A (2004) Modeling feedback loops of the mammalian circadian oscillator. Biophys J 87: 3023–3034.
|
[13] | Forger D, Gonze D, Virshup D, Welsh D. K (2007) Beyond intuitive modeling: combining biophysical models with innovative experiments to move the circadian clock field forward. J Biol Rhythms 22: 200–210.
|
[14] | Forger D. B, Peskin C. S (2003) A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci U S A 100: 14806–14811.
|
[15] | Leloup J. C, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci U S A 100: 7051–7056.
|
[16] | To T. L, Henson M. A, Herzog E. D, Doyle F. J 3rd (2007) A molecular model for intercellular synchronization in the mammalian circadian clock. Biophys J 92: 3792–3803.
|
[17] | Liu C, Weaver D. R, Strogatz S. H, Reppert S. M (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91: 855–860.
|
[18] | Kunz H, Achermann P (2003) Simulation of circadian rhythm generation in the suprachiasmatic nucleus with locally coupled self-sustained oscillators. J Theor Biol 224: 63–78.
|
[19] | Indic P, Schwartz W. J, Herzog E. D, Foley N. C, Antle M. C (2007) Modeling the behavior of coupled cellular circadian oscillators in the suprachiasmatic nucleus. J Biol Rhythms 22: 211–219.
|
[20] | Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous synchronization of coupled circadian oscillators. Biophys J 89: 120–129.
|
[21] | Bernard S, Gonze D, Cajavec B, Herzel H, Kramer A (2007) Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Comput Biol 3: e68. doi:10.1371/journal.pcbi.0030068.
|
[22] | Antle M. C, Foley N. C, Foley D. K, Silver R (2007) Gates and oscillators II: zeitgebers and the network model of the brain clock. J Biol Rhythms 22: 14–25.
|
[23] | Rougemont J, Naef F (2006) Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. Phys Rev E Stat Nonlin Soft Matter Phys 73: 011104.
|
[24] | Strogatz S. H (2001) Exploring complex networks. Nature 410: 268–276.
|
[25] | Winfree A. T (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16: 15–42.
|
[26] | Enright J. T (1984) Mutual excitation of damped oscillators and self-sustainment of circadian rhythms. In: Moore-Ede M. C, Czeisler C. A, editors. Mathematical models of the circadian sleep-wake cycle. New York: Raven Press. pp. 1–16.
|
[27] | Bagheri N, Taylor S. R, Meeker K, Petzold L. R, Doyle F. J 3rd (2008) Synchrony and entrainment properties of robust circadian oscillators. J R Soc Interface 5: Suppl 1S17–S28.
|
[28] | Liu A. C, Welsh D. K, Ko C. H, Tran H. G, Zhang E. E, et al. (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129: 605–616.
|
[29] | Ueda H. R, Hirose K, Iino M (2002) Intercellular coupling mechanism for synchronized and noise-resistant circadian oscillators. J Theor Biol 216: 501–512.
|
[30] | Gonze D, Goldbeter A (2006) Circadian rhythms and molecular noise. Chaos 16: 026110.
|
[31] | Vilar J. M, Kueh H. Y, Barkai N, Leibler S (2002) Mechanisms of noise-resistance in genetic oscillators. Proc Natl Acad Sci U S A 99: 5988–5992.
|
[32] | Gonze D, Halloy J, Leloup J. C, Goldbeter A (2003) Stochastic models for circadian rhythms: effect of molecular noise on periodic and chaotic behaviour. C R Biol 326: 189–203.
|
[33] | Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. Proc Natl Acad Sci U S A 99: 673–678.
|
[34] | Forger D. B, Peskin C. S (2005) Stochastic simulation of the mammalian circadian clock. Proc Natl Acad Sci U S A 102: 321–324.
|
[35] | Barkai N, Leibler S (2000) Circadian clocks limited by noise. Nature 403: 267–268.
|
[36] | Westermark P. O, Welsh D. K, Okamura H, Herzel H (2009) Quantification of circadian rhythms in single cells. PLoS Comput Biol 5: e1000580. doi:10.1371/journal.pcbi.1000580.
|
[37] | Aton S. J, Colwell C. S, Harmar A. J, Waschek J, Herzog E. D (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8: 476–483.
|
[38] | Maywood E. S, Reddy A. B, Wong G. K, O'Neill J. S, O'Brien J. A, et al. (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16: 599–605.
|
[39] | Pittendrigh C. S, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents: I. The stability and lability of spontaneous frequency. J Comp Physiol A 106: 223–252.
|
[40] | Beek P. J, Peper C. E, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: beyond the Haken-Kelso-Bunz model. Brain Cogn 48: 149–165.
|
[41] | Siepka S. M, Yoo S. H, Park J, Song W, Kumar V, et al. (2007) Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129: 1011–1023.
|
[42] | Shi S, Hida A, McGuinness O. P, Wasserman D. H, Yamazaki S, et al. (2010) Circadian clock gene Bmal1 is not essential; functional replacement with its paralog, Bmal2. Curr Biol 20: 316–321.
|
[43] | Pulivarthy S. R, Tanaka N, Welsh D. K, De Haro L, Verma I. M, et al. (2007) Reciprocity between phase shifts and amplitude changes in the mammalian circadian clock. Proc Natl Acad Sci U S A 104: 20356–20361.
|
[44] | Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, et al. (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302: 1408–1412.
|
[45] | Albus H, Vansteensel M. J, Michel S, Block G. D, Meijer J. H (2005) A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr Biol 15: 886–893.
|
[46] | Aton S. J, Huettner J. E, Straume M, Herzog E. D (2006) GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci U S A 103: 19188–19193.
|
[47] | O'Neill J. S, Maywood E. S, Chesham J. E, Takahashi J. S, Hastings M. H (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320: 949–953.
|
[48] | Tischkau S. A, Mitchell J. W, Tyan S. H, Buchanan G. F, Gillette M. U (2003) Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J Biol Chem 278: 718–723.
|
[49] | Itri J, Colwell C. S (2003) Regulation of inhibitory synaptic transmission by vasoactive intestinal peptide (VIP) in the mouse suprachiasmatic nucleus. J Neurophysiol 90: 1589–1597.
|
[50] | Meng Q. J, Logunova L, Maywood E. S, Gallego M, Lebiecki J, et al. (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58: 78–88.
|
[51] | Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada R. G, et al. (2009) CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci U S A 106: 15744–15749.
|
[52] | Gallego M, Eide E. J, Woolf M. F, Virshup D. M, Forger D. B (2006) An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci U S A 103: 10618–10623.
|
[53] | Wilkins A. K, Barton P. I, Tidor B (2007) The Per2 negative feedback loop sets the period in the mammalian circadian clock mechanism. PLoS Comput Biol 3: e242. doi:10.1371/journal.pcbi.0030242.
|
[54] | Hastings M. H, Reddy A. B, Maywood E. S (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4: 649–661.
|
[55] | Herzog E. D (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8: 790–802.
|
[56] | Herzog E. D, Aton S. J, Numano R, Sakaki Y, Tei H (2004) Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythms 19: 35–46.
|
[57] | Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69: 291–316.
|
[58] | Kaern M, Elston T. C, Blake W. J, Collins J. J (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6: 451–464.
|
[59] | Maheshri N, O'Shea E. K (2007) Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu Rev Biophys Biomol Struct 36: 413–434.
|
[60] | Raser J. M, O'Shea E. K (2005) Noise in gene expression: origins, consequences, and control. Science 309: 2010–2013.
|
[61] | Elowitz M. B, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338.
|
[62] | Sim C. K, Forger D. B (2007) Modeling the electrophysiology of suprachiasmatic nucleus neurons. J Biol Rhythms 22: 445–453.
|
[63] | Bush W. S, Siegelman H. T (2006) Circadian synchrony in networks of protein rhythm driven neurons. Complexity 12: 67–72.
|
[64] | Hao H, Zak D. E, Sauter T, Schwaber J, Ogunnaike B. A (2006) Modeling the VPAC2-activated cAMP/PKA signaling pathway: from receptor to circadian clock gene induction. Biophys J 90: 1560–1571.
|
[65] | Suel G. M, Kulkarni R. P, Dworkin J, Garcia-Ojalvo J, Elowitz M. B (2007) Tunability and noise dependence in differentiation dynamics. Science 315: 1716–1719.
|
[66] | Stratonovich R. L (1967) Topics in the theory of random noise. In: Silverman R. A, editor. translator. New York: Gordon and Breach, Science Publishers, Inc. 327 p.
|
[67] | Horikawa K, Ishimatsu K, Yoshimoto E, Kondo S, Takeda H (2006) Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441: 719–723.
|
[68] | Riedel-Kruse I. H, Muller C, Oates A. C (2007) Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317: 1911–1915.
|
[69] | Li Q, Wang Y (2007) Coupling and internal noise sustain synchronized oscillation in calcium system. Biophys Chem 129: 23–28.
|
[70] | Honma K, Honma S (2009) The SCN-independent clocks, methamphetamine and food restriction. Eur J Neurosci 30: 1707–1717.
|
[71] | Honma S, Yasuda T, Yasui A, van der Horst G. T, Honma K (2008) Circadian behavioral rhythms in Cry1/Cry2 double-deficient mice induced by methamphetamine. J Biol Rhythms 23: 91–94.
|
[72] | Storch K. F, Weitz C. J (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106: 6808–6813.
|
[73] | Mohawk J. A, Baer M. L, Menaker M (2009) The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc Natl Acad Sci U S A 106: 3519–3524.
|
[74] | Pendergast J. S, Nakamura W, Friday R. C, Hatanaka F, Takumi T, et al. (2009) Robust food anticipatory activity in BMAL1-deficient mice. PLoS One 4: e4860. doi:10.1371/journal.pone.0004860.
|
[75] | Siepka S. M, Takahashi J. S (2005) Methods to record circadian rhythm wheel running activity in mice. Methods Enzymol 393: 230–239.
|
[76] | Yamazaki S, Takahashi J. S (2005) Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393: 288–301.
|
[77] | Welsh D. K, Imaizumi T, Kay S. A (2005) Real-time reporting of circadian-regulated gene expression by luciferase imaging in plants and Mammalian cells. Methods Enzymol 393: 269–288.
|
[78] | Takahashi J. S, Menaker M (1982) Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J Neurosci 2: 815–828.
|
[79] | Fan Y, Hida A, Anderson D. A, Izumo M, Johnson C. H (2007) Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr Biol 17: 1091–1100.
|
[80] | Garcia-Ojalvo J, Elowitz M. B, Strogatz S. H (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci U S A 101: 10955–10960.
|
[81] | Sato T. K, Yamada R. G, Ukai H, Baggs J. E, Miraglia L. J, et al. (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38: 312–319.
|