[1] | Rieder C. L, Salmon E. D (1998) The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol 8: 310–318.
|
[2] | Rieder C. L, Schultz A, Cole R, Sluder G (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127: 1301–1310.
|
[3] | Murray A. W (1995) The genetics of cell cycle checkpoints. Curr Opin Genet Dev 5: 5–11.
|
[4] | Hoyt M. A, Totis L, Roberts B. T (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66: 507–517.
|
[5] | Li R, Murray A. W (1991) Feedback control of mitosis in budding yeast. Cell 66: 519–531.
|
[6] | Li Y, Benezra R (1996) Identification of a human mitotic checkpoint gene: hsMAD2. Science 274: 246–248.
|
[7] | Pangilinan F, Li Q, Weaver T, Lewis B. C, Dang C. V, et al. (1997) Mammalian BUB1 protein kinases: map positions and in vivo expression. Genomics 46: 379–388.
|
[8] | Taylor S. S, McKeon F (1997) Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89: 727–735.
|
[9] | Ding R, West R. R, Morphew D. M, Oakley B. R, McIntosh J. R (1997) The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol Biol Cell 8: 1461–1479.
|
[10] | Hiraoka Y, Toda T, Yanagida M (1984) The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39: 349–358.
|
[11] | Toda T, Umesono K, Hirata A, Yanagida M (1983) Cold-sensitive nuclear division arrest mutants of the fission yeast Schizosaccharomyces pombe. J Mol Biol 168: 251–270.
|
[12] | Radcliffe P, Hirata D, Childs D, Vardy L, Toda T (1998) Identification of novel temperature-sensitive lethal alleles in essential beta-tubulin and nonessential alpha 2-tubulin genes as fission yeast polarity mutants. Mol Biol Cell 9: 1757–1771.
|
[13] | He X, Patterson T. E, Sazer S (1997) The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc Natl Acad Sci U S A 94: 7965–7970.
|
[14] | Sawin K. E, Snaith H. A (2004) Role of microtubules and tea1p in establishment and maintenance of fission yeast cell polarity. J Cell Sci 117: 689–700.
|
[15] | Hirano T, Funahashi S. I, Uemura T, Yanagida M (1986) Isolation and characterization of Schizosaccharomyces pombe cutmutants that block nuclear division but not cytokinesis. Embo J 5: 2973–2979.
|
[16] | Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146: 167–178.
|
[17] | Minet M, Nurse P, Thuriaux P, Mitchison J. M (1979) Uncontrolled septation in a cell division cycle mutant of the fission yeast Schizosaccharomyces pombe. J Bacteriol 137: 440–446.
|
[18] | Russell P, Nurse P (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45: 145–153.
|
[19] | Nasmyth K, Nurse P (1981) Cell division cycle mutants altered in DNA replication and mitosis in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 182: 119–124.
|
[20] | Hagan I, Yanagida M (1992) Kinesin-related cut7 protein associates with mitotic and meiotic spindles in fission yeast. Nature 356: 74–76.
|
[21] | Nabetani A, Koujin T, Tsutsumi C, Haraguchi T, Hiraoka Y (2001) A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110: 322–334.
|
[22] | West R. R, Vaisberg E. V, Ding R, Nurse P, McIntosh J. R (1998) cut11(+): a gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol Biol Cell 9: 2839–2855.
|
[23] | Grishchuk E. L, McIntosh J. R (2006) Microtubule depolymerization can drive poleward chromosome motion in fission yeast. Embo J 25: 4888–4896.
|
[24] | Li T, Naqvi N. I, Yang H, Teo T. S (2000) Identification of a 26S proteasome-associated UCH in fission yeast. Biochem Biophys Res Commun 272: 270–275.
|
[25] | Zheng L, Schwartz C, Magidson V, Khodjakov A, Oliferenko S (2007) The spindle pole bodies facilitate nuclear envelope division during closed mitosis in fission yeast. PLoS Biol 5: e170. doi:10.1371/journal.pbio.0050170.
|
[26] | Uzawa S, Li F, Jin Y, McDonald K. L, Braunfeld M. B, et al. (2004) Spindle pole body duplication in fission yeast occurs at the G1/S boundary but maturation is blocked until exit from S by an event downstream of cdc10+. Mol Biol Cell 15: 5219–5230.
|
[27] | Bridge A. J, Morphew M, Bartlett R, Hagan I. M (1998) The fission yeast SPB component Cut12 links bipolar spindle formation to mitotic control. Genes Dev 12: 927–942.
|
[28] | Hagan I, Yanagida M (1995) The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol 129: 1033–1047.
|
[29] | Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400: 37–42.
|
[30] | Trautmann S, Wolfe B. A, Jorgensen P, Tyers M, Gould K. L, et al. (2001) Fission yeast Clp1p phosphatase regulates G2/M transition and coordination of cytokinesis with cell cycle progression. Curr Biol 11: 931–940.
|
[31] | Funabiki H, Kumada K, Yanagida M (1996) Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. Embo J 15: 6617–6628.
|
[32] | Funabiki H, Hagan I, Uzawa S, Yanagida M (1993) Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976.
|
[33] | King M. C, Drivas T. G, Blobel G (2008) A network of nuclear envelope membrane proteins linking centromeres to microtubules. Cell 134: 427–438.
|
[34] | Ford J. H, Schultz C. J, Correll A. T (1988) Chromosome elimination in micronuclei: a common cause of hypoploidy. Am J Hum Genet 43: 733–740.
|
[35] | Norppa H, Falck G. C (2003) What do human micronuclei contain? Mutagenesis 18: 221–233.
|
[36] | Ohsugi M, Adachi K, Horai R, Kakuta S, Sudo K, et al. (2008) Kid-mediated chromosome compaction ensures proper nuclear envelope formation. Cell 132: 771–782.
|
[37] | Montag M, Spring H, Trendelenburg M. F (1988) Structural analysis of the mitotic cycle in pre-gastrula Xenopus embryos. Chromosoma 96: 187–196.
|
[38] | Webster M, Witkin K. L, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122: 1477–1486.
|
[39] | Mattaj I. W (2004) Sorting out the nuclear envelope from the endoplasmic reticulum. Nat Rev Mol Cell Biol 5: 65–69.
|
[40] | Lim H. W. G, Huber G, Torii Y, Hirata A, Miller J, et al. (2007) Vesicle-like biomechanics governs important aspects of nuclear geometry in fission yeast. PLoS One 2: e948. doi:10.1371/journal.pone.0000948.
|
[41] | Campbell J. L, Lorenz A, Witkin K. L, Hays T, Loidl J, et al. (2006) Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol Biol Cell 17: 1768–1778.
|
[42] | Santos-Rosa H, Leung J, Grimsey N, Peak-Chew S, Siniossoglou S (2005) The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J 24: 1931–1941.
|
[43] | Pantaloni D, Le Clainche C, Carlier M. F (2001) Mechanism of actin-based motility. Science 292: 1502–1506.
|
[44] | Moller-Jensen J, Jensen R. B, Lowe J, Gerdes K (2002) Prokaryotic DNA segregation by an actin-like filament. Embo J 21: 3119–3127.
|
[45] | Thanbichler M, Shapiro L (2006) Chromosome organization and segregation in bacteria. J Struct Biol 156: 292–303.
|
[46] | Wang X, Dai W (2005) Shugoshin, a guardian for sister chromatid segregation. Exp Cell Res 310: 1–9.
|
[47] | Rosenblatt J, Cramer L. P, Baum B, McGee K. M (2004) Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell 117: 361–372.
|
[48] | Waters J. C, Cole R. W, Rieder C. L (1993) The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster. J Cell Biol 122: 361–372.
|
[49] | Palframan W. J, Meehl J. B, Jaspersen S. L, Winey M, Murray A. W (2006) Anaphase inactivation of the spindle checkpoint. Science 313: 680–684.
|
[50] | Lundgren M, Bernander R (2005) Archaeal cell cycle progress. Curr Opin Microbiol 8: 662–668.
|
[51] | Leaver M, Dominguez-Cuevas P, Coxhead J. M, Daniel R. A, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457: 849–853.
|
[52] | Ukil L, De Souza C. P, Liu H. L, Osmani S. A (2009) Nucleolar separation from chromosomes during Aspergillus nidulans mitosis can occur without spindle forces. Mol Biol Cell 20: 2132–2145.
|
[53] | Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823.
|
[54] | Alfa C. E, Gallagher I. M, Hyams J. S (1993) Antigen localization in fission yeast. Methods Cell Biol 37: 201–222.
|