全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Genome-Wide Analysis of Light- and Temperature-Entrained Circadian Transcripts in Caenorhabditis elegans

DOI: 10.1371/journal.pbio.1000503

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most organisms have an endogenous circadian clock that is synchronized to environmental signals such as light and temperature. Although circadian rhythms have been described in the nematode Caenorhabditis elegans at the behavioral level, these rhythms appear to be relatively non-robust. Moreover, in contrast to other animal models, no circadian transcriptional rhythms have been identified. Thus, whether this organism contains a bona fide circadian clock remains an open question. Here we use genome-wide expression profiling experiments to identify light- and temperature-entrained oscillating transcripts in C. elegans. These transcripts exhibit rhythmic expression with temperature-compensated 24-h periods. In addition, their expression is sustained under constant conditions, suggesting that they are under circadian regulation. Light and temperature cycles strongly drive gene expression and appear to entrain largely nonoverlapping gene sets. We show that mutations in a cyclic nucleotide-gated channel required for sensory transduction abolish both light- and temperature-entrained gene expression, implying that environmental cues act cell nonautonomously to entrain circadian rhythms. Together, these findings demonstrate circadian-regulated transcriptional rhythms in C. elegans and suggest that further analyses in this organism will provide new information about the evolution and function of this biological clock.

References

[1]  Young M. W, Kay S. A (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2: 702–715.
[2]  Rosbash M (2009) The implications of multiple circadian clock origins. PLoS Biol 7: e62. doi:10.1371/journal.pbio.1000062.
[3]  Kondo T (2007) A cyanobacterial circadian clock based on the Kai oscillator. Cold Spring Harb Symp Quant Biol 72: 47–55.
[4]  Bell-Pedersen D, Cassone V. M, Earnest D. J, Golden S. S, Hardin P. E, et al. (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6: 544–556.
[5]  Yu W, Hardin P. E (2006) Circadian oscillators of Drosophila and mammals. J Cell Sci 119: 4793–4795.
[6]  Johnson C. H, Mori T, Xu Y (2008) A cyanobacterial circadian clockwork. Curr Biol 18: R816–R825.
[7]  Allada R, Emery P, Takahashi J. S, Rosbash M (2001) Stopping time: the genetics of fly and mouse circadian clocks. Annu Rev Neurosci 24: 1091–1119.
[8]  Allada R, Chung B. Y (2010) Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72: 605–624.
[9]  de Bono M, Maricq A. V (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28: 451–501.
[10]  Fielenbach N, Antebi A (2008) C. elegans dauer formation and the molecular basis of plasticity. Genes Dev 22: 2149–2165.
[11]  Antebi A (2007) Genetics of aging in Caenorhabditis elegans. PLoS Genet 3: e129. doi:10.1371/journal.pgen.0030129.
[12]  Conradt B (2009) Genetic control of programmed cell death during animal development. Annu Rev Genet 43: 493–523.
[13]  Ramot D, MacInnis B. L, Lee H. C, Goodman M. B (2008) Thermotaxis is a robust mechanism for thermoregulation in Caenorhabditis elegans nematodes. J Neurosci 28: 12546–12557.
[14]  Robinson A. F (1994) Movement of five nematode species through sand subjected to natural temperature gradient fluctuations. J Nematol 26: 46–58.
[15]  Kiontke K, Sudhaus W (2006) Ecology of Caenorhabditis species. WormBook 1–14.
[16]  Saigusa T, Ishizaki S, Watabiki S, Ishii N, Tanakadate A, et al. (2002) Circadian behavioural rhythm in Caenorhabditis elegans. Curr Biol 12: R46–R47.
[17]  Kippert F, Saunders D. S, Blaxter M. L (2002) Caenorhabditis elegans has a circadian clock. Curr Biol 12: R47–R49.
[18]  Simonetta S. H, Golombek D. A (2007) An automated tracking system for Caenorhabditis elegans locomotor behavior and circadian studies application. J Neurosci Methods 161: 273–280.
[19]  Simonetta S. H, Migliori M. L, Romanowski A, Golombek D. A (2009) Timing of locomotor activity circadian rhythms in Caenorhabditis elegans. PLoS ONE 4: e7571. doi:10.1371/journal.pone.0007571.
[20]  Simonetta S. H, Romanowski A, Minniti A. N, Inestrosa N. C, Golombek D. A (2008) Circadian stress tolerance in adult Caenorhabditis elegans. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194: 821–828.
[21]  Jeon M, Gardner H. F, Miller E. A, Deshler J, Rougvie A. E (1999) Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins. Science 286: 1141–1146.
[22]  McDonald M. J, Rosbash M, Emery P (2001) Wild-type circadian rhythmicity is dependent on closely spaced E boxes in the Drosophila timeless promoter. Mol Cell Biol 21: 1207–1217.
[23]  Hardin P. E, Hall J. C, Rosbash M (1992) Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc Natl Acad Sci U S A 89: 11711–11715.
[24]  Sehgal A, Rothenfluh-Hilfiker A, Hunter-Ensor M, Chen Y, Myers M. P, et al. (1995) Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270: 808–810.
[25]  Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, et al. (1997) Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389: 512–516.
[26]  Shearman L. P, Zylka M. J, Weaver D. R, Kolakowski L. F Jr, Reppert S. M (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19: 1261–1269.
[27]  Gallego M, Virshup D. M (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8: 139–148.
[28]  Mehra A, Baker C. L, Loros J. J, Dunlap J. C (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34: 483–490.
[29]  Liu Y, Garceau N. Y, Loros J. J, Dunlap J. C (1997) Thermally regulated translational control of FRQ mediates aspects of temperature responses in the Neurospora circadian clock. Cell 89: 477–486.
[30]  Garceau N. Y, Liu Y, Loros J. J, Dunlap J. C (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89: 469–476.
[31]  Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, et al. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308: 414–415.
[32]  Kadener S, Menet J. S, Sugino K, Horwich M. D, Weissbein U, et al. (2009) A role for microRNAs in the Drosophila circadian clock. Genes Dev 23: 2179–2191.
[33]  Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, et al. (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32: 657–671.
[34]  Ceriani M. F, Hogenesch J. B, Yanovsky M, Panda S, Straume M, et al. (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 22: 9305–9319.
[35]  McDonald M. J, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107: 567–578.
[36]  Ueda H. R, Matsumoto A, Kawamura M, Iino M, Tanimura T, et al. (2002) Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J Biol Chem 277: 14048–14052.
[37]  Akhtar R. A, Reddy A. B, Maywood E. S, Clayton J. D, King V. M, et al. (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12: 540–550.
[38]  Correa A, Lewis Z. A, Greene A. V, March I. J, Gomer R. H, et al. (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc Natl Acad Sci U S A 100: 13597–13602.
[39]  Duffield G. E, Best J. D, Meurers B. H, Bittner A, Loros J. J, et al. (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12: 551–557.
[40]  Nowrousian M, Duffield G. E, Loros J. J, Dunlap J. C (2003) The frequency gene is required for temperature-dependent regulation of many clock-controlled genes in Neurospora crassa. Genetics 164: 923–933.
[41]  Wijnen H, Naef F, Boothroyd C, Claridge-Chang A, Young M. W (2006) Control of daily transcript oscillations in Drosophila by light and the circadian clock. PLoS Genet 2: e39. doi:10.1371/journal.pgen.0020039.
[42]  Ward A, Liu J, Feng Z, Xu X. Z (2008) Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11: 916–922.
[43]  Hedgecock E. M, Russell R. L (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72: 4061–4065.
[44]  Liu J, Ward A, Gao J, Dong Y, Nishio N, et al. (2010) C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat Neurosci 13: 715–722.
[45]  Mitchell D. H, Stiles J. W, Santelli J, Sanadi D. R (1979) Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J Gerontol 34: 28–36.
[46]  Wijnen H, Naef F, Young M. W (2005) Molecular and statistical tools for circadian transcript profiling. Methods Enzymol 393: 341–365.
[47]  Boothroyd C. E, Wijnen H, Naef F, Saez L, Young M. W (2007) Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 3: e54. doi:10.1371/journal.pgen.0030054.
[48]  Hughes M. E, DiTacchio L, Hayes K. R, Vollmers C, Pulivarthy S, et al. (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5: e1000442. doi:10.1371/journal.pgen.1000442.
[49]  Ashburner M, Ball C. A, Blake J. A, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.
[50]  Hardin P. E (2006) Essential and expendable features of the circadian timekeeping mechanism. Curr Opin Neurobiol 16: 686–692.
[51]  Hastings J. W, Sweeney B. M (1957) On the mechanism of temperature independence in a biological clock. Proc Natl Acad Sci U S A 43: 804–811.
[52]  Roenneberg T, Dragovic Z, Merrow M (2005) Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock. Proc Natl Acad Sci U S A 102: 7742–7747.
[53]  Merrow M, Brunner M, Roenneberg T (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399: 584–586.
[54]  Aschoff J, Pohl H (1978) Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65: 80–84.
[55]  Roenneberg T, Daan S, Merrow M (2003) The art of entrainment. J Biol Rhythms 18: 183–194.
[56]  Brown S. A, Ripperger J, Kadener S, Fleury-Olela F, Vilbois F, et al. (2005) PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308: 693–696.
[57]  Kloss B, Price J. L, Saez L, Blau J, Rothenfluh A, et al. (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94: 97–107.
[58]  Frand A. R, Russel S, Ruvkun G (2005) Functional genomic analysis of C. elegans molting. PLoS Biol 3: e312. doi:10.1371/journal.pbio.0030312.
[59]  Berson D. M, Dunn F. A, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070–1073.
[60]  Hattar S, Lucas R. J, Mrosovsky N, Thompson S, Douglas R. H, et al. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76–81.
[61]  Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, et al. (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95: 681–692.
[62]  Emery P, So W. V, Kaneko M, Hall J. C, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95: 669–679.
[63]  van der Horst G. T, Muijtjens M, Kobayashi K, Takano R, Kanno S, et al. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398: 627–630.
[64]  Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, et al. (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15: 1650–1657.
[65]  Coburn C, Bargmann C. I (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17: 695–706.
[66]  Edwards S. L, Charlie N. K, Milfort M. C, Brown B. S, Gravlin C. N, et al. (2008) A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 6: e198. doi:10.1371/journal.pbio.0060198.
[67]  Prahlad V, Cornelius T, Morimoto R. I (2008) Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 320: 811–814.
[68]  Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376: 344–348.
[69]  Yoshii T, Vanin S, Costa R, Helfrich-Forster C (2009) Synergic entrainment of Drosophila's circadian clock by light and temperature. J Biol Rhythms 24: 452–464.
[70]  Matsumoto A, Matsumoto N, Harui Y, Sakamoto M, Tomioka K (1998) Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. J Insect Physiol 44: 587–596.
[71]  Gekakis N, Staknis D, Nguyen H. B, Davis F. C, Wilsbacher L. D, et al. (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564–1569.
[72]  Alabadi D, Oyama T, Yanovsky M. J, Harmon F. G, Mas P, et al. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293: 880–883.
[73]  Minamoto T, Hanai S, Kadota K, Oishi K, Matsumae H, et al. (2009) Circadian clock in Ciona intestinalis revealed by microarray analysis and oxygen consumption. J Biochem 147: 175–184.
[74]  Cha J, Huang G, Guo J, Liu Y (2007) Posttranslational control of the Neurospora circadian clock. Cold Spring Harb Symp Quant Biol 72: 185–191.
[75]  Zheng X, Sehgal A (2008) Probing the relative importance of molecular oscillations in the circadian clock. Genetics 178: 1147–1155.
[76]  Harms E, Kivimae S, Young M. W, Saez L (2004) Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 19: 361–373.
[77]  Hardin P. E (1994) Analysis of period mRNA cycling in Drosophila head and body tissues indicates that body oscillators behave differently from head oscillators. Mol Cell Biol 14: 7211–7218.
[78]  Plautz J. D, Kaneko M, Hall J. C, Kay S. A (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278: 1632–1635.
[79]  Chalfie M, Sulston J. E, White J. G, Southgate E, Thomson J. N, et al. (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci 5: 956–964.
[80]  Croll N. A (1975) Components and patterns in the behavior of the nematode Caenorhabditis elegans. J Zool (1987) 176: 159–176.
[81]  Gray J. M, Hill J. J, Bargmann C. I (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102: 3184–3191.
[82]  Pierce-Shimomura J. T, Morse T. M, Lockery S. R (1999) The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J Neurosci 19: 9557–9569.
[83]  Srivastava N, Clark D. A, Samuel A. D (2009) Temporal analysis of stochastic turning behavior of swimming C. elegans. J Neurophysiol 102: 1172–1179.
[84]  Yu S, Avery L, Baude E, Garbers D. A (1997) Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors. Proc Natl Acad Sci U S A 94: 3384–3387.
[85]  Chelur D. S, Chalfie M (2007) Targeted cell killing by reconstituted caspases. Proc Natl Acad Sci U S A 104: 2283–2288.
[86]  Portman D. S, The C. elegans Research Community, editor (2006) Profiling C. elegans gene expression with DNA microarrays. WormBook. doi/10.1895/wormbook.1.104.1.
[87]  Keegan K. P, Pradhan S, Wang J. P, Allada R (2007) Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes. PLoS Comput Biol 3: e208. doi:10.1371/journal.pcbi.0030208.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133