全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport

DOI: 10.1371/journal.pbio.1000516

Full-Text   Cite this paper   Add to My Lib

Abstract:

Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis.

References

[1]  Jonsson H, Heisler M. G, Shapiro B. E, Mjolsness E, Meyerowitz E. M (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103: 1633–1638.
[2]  Smith R. S, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, et al. (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103: 1301–1306.
[3]  Petrasek J, Mravec J, Bouchard R, Blakeslee J. J, Abas M, et al. (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914–918.
[4]  Chapman E. J, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43: 265–285.
[5]  Heisler M. G, Ohno C, Das P, Sieber P, Reddy G. V, et al. (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15: 1899–1911.
[6]  Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20: 1790–1799.
[7]  Okada K, Ueda J, Komaki M. K, Bell C. J, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3: 677–684.
[8]  Peaucelle A, Louvet R, Johansen J. N, H?fte H, Laufs P, et al. (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18: 1943–1948.
[9]  Fleming A. J, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415–1418.
[10]  Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12: 507–518.
[11]  Hamant O, Heisler M. G, Jonsson H, Krupinski P, Uyttewaal M, et al. (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322: 1650–1655.
[12]  Reddy G. V, Heisler M. G, Ehrhardt D. W, Meyerowitz E. M (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131: 4225–4237.
[13]  Geldner N, Friml J, Stierhof Y. D, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428.
[14]  Boutte Y, Crosnier M. T, Carraro N, Traas J, Satiat-Jeunemaitre B (2006) The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 119: 1255–1265.
[15]  Grandjean O, Vernoux T, Laufs P, Belcram K, Mizukami Y, et al. (2004) In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16: 74–87.
[16]  Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, et al. (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci U S A 106: 8453–8458.
[17]  Bayer E. M, Smith R. S, Mandel T, Nakayama N, Sauer M, et al. (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23: 373–384.
[18]  Scheible W. R, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci U S A 98: 10079–10084.
[19]  Paredez A. R, Somerville C. R, Ehrhardt D. W (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495.
[20]  Gutierrez R, Lindeboom J. J, Paredez A. R, Emons A. M, Ehrhardt D. W (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11: 797–806.
[21]  Fisher D. D, Cyr R. J (1998) Extending the microtubule/microfibril paradigm—cellulose synthesis is required for normal cortical microtubule alignment in elongating cells. Plant Physiol 116: 1043–1051.
[22]  Himmelspach R, Williamson R. E, Wasteneys G. O (2003) Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J 36: 565–575.
[23]  Paredez A. R, Persson S, Ehrhardt D. W, Somerville C. R (2008) Genetic evidence that cellulose synthase activity influences microtubule cortical array organization. Plant Physiol 147: 1723–1734.
[24]  Lloyd C, Chan J (2004) Microtubules and the shape of plants to come. Nat Rev Mol Cell Biol 5: 13–22.
[25]  Sakaguchi S, Hogetsu T, Hara N (1988) Arrangement of cortical microtubules in the shoot apex of Vinca major L. Planta 175: 403–411.
[26]  Marc J, Hackett W. P (1989) A new method for immunofluorescent localization of microtubules in surface cell layers—application to the shoot apical meristem of Hedera. Protoplasma 148: 70–79.
[27]  Friml J, Yang X, Michniewicz M, Weijers D, Quint A, et al. (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306: 862–865.
[28]  Rubery P. H, Sheldrake A. R (1974) Carrier-mediated auxin transport. Planta 118: 101–121.
[29]  Raven J. A (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163–172.
[30]  Sahlin P, Soderberg B, Jonsson H (2009) Regulated transport as a mechanism for pattern generation: capabilities for phyllotaxis and beyond. J Theor Biol 258: 60–70.
[31]  Reinhardt D, Pesce E. R, Stieger P, Mandel T, Baltensperger K, et al. (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426: 255–260.
[32]  Mitchison G. J (1977) Phyllotaxis and Fibonacci series. Science 196: 270–275.
[33]  Douady S, Couder Y (1992) Phyllotaxis as a physical self-organized growth process. Phys Rev Lett 68: 2098–2101.
[34]  Ditengou F. A, Teale W. D, Kochersperger P, Flittner K. A, Kneuper I, et al. (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105: 18818–18823.
[35]  Williamson R. E (1990) Alignment of cortical microtubules by anisotropic wall stresses. Aust J Plant Physiol 17: 601–613.
[36]  Peterson R. E (1974) Stress concentration factors: charts and relations useful in making strength calculations for machine parts and structural elements. New York: Wiley. 317 p.
[37]  Newell A. C, Shipman P. D, Sun Z (2008) Phyllotaxis: cooperation and competition between mechanical and biochemical processes. J Theor Biol 251: 421–439.
[38]  de Reuille P. B, Bohn-Courseau I, Godin C, Traas J (2005) A protocol to analyse cellular dynamics during plant development. Plant J 44: 1045–1053.
[39]  Shaner N. C, Lin M. Z, McKeown M. R, Steinbach P. A, Hazelwood K. L, et al. (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5: 545–551.
[40]  Craft J, Samalova M, Baroux C, Townley H, Martinez A, et al. (2005) New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J 41: 899–918.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133