全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

A Protein Inventory of Human Ribosome Biogenesis Reveals an Essential Function of Exportin 5 in 60S Subunit Export

DOI: 10.1371/journal.pbio.1000522

Full-Text   Cite this paper   Add to My Lib

Abstract:

The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits. To date, only few human homologs of these yeast ribosome synthesis factors have been characterized. Here, we used a systematic RNA interference (RNAi) approach to analyze the contribution of 464 candidate factors to ribosomal subunit biogenesis in human cells. The screen was based on visual readouts, using inducible, fluorescent ribosomal proteins as reporters. By performing computer-based image analysis utilizing supervised machine-learning techniques, we obtained evidence for a functional link of 153 human proteins to ribosome synthesis. Our data show that core features of ribosome assembly are conserved from yeast to human, but differences exist for instance with respect to 60S subunit export. Unexpectedly, our RNAi screen uncovered a requirement for the export receptor Exportin 5 (Exp5) in nuclear export of 60S subunits in human cells. We show that Exp5, like the known 60S exportin Crm1, binds to pre-60S particles in a RanGTP-dependent manner. Interference with either Exp5 or Crm1 function blocks 60S export in both human cells and frog oocytes, whereas 40S export is compromised only upon inhibition of Crm1. Thus, 60S subunit export is dependent on at least two RanGTP-binding exportins in vertebrate cells.

References

[1]  Mizushima S, Nomura M (1970) Assembly mapping of 30S ribosomal proteins from E. coli. Nature 226: 1214.
[2]  Nierhaus K. H, Dohme F (1974) Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc Natl Acad Sci U S A 71: 4713–4717.
[3]  Connolly K, Culver G (2009) Deconstructing ribosome construction. Trends Biochem Sci 34: 256–263.
[4]  Kaczanowska M, Ryden-Aulin M (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71: 477–494.
[5]  Hage A. E, Tollervey D (2004) A surfeit of factors: why is ribosome assembly so much more complicated in eukaryotes than bacteria? RNA Biol 1: 10–15.
[6]  Henras A. K, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, et al. (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65: 2334–2359.
[7]  Tschochner H, Hurt E (2003) Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 13: 255–263.
[8]  Dragon F, Gallagher J. E, Compagnone-Post P. A, Mitchell B. M, Porwancher K. A, et al. (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417: 967–970.
[9]  Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, et al. (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10: 105–115.
[10]  Granneman S, Baserga S. J (2004) Ribosome biogenesis of knobs and RNA processing. Exp Cell Res 296: 43–50.
[11]  Panse V. G, Johnson A. W (2010) Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci 35: 260–266.
[12]  Zemp I, Kutay U (2007) Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett 581: 2783–2793.
[13]  Li Z, Lee I, Moradi E, Hung N. J, Johnson A. W, et al. (2009) Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol 7: e1000213. doi:10.1371/journal.pbio.1000213.
[14]  Nissan T. A, Bassler J, Petfalski E, Tollervey D, Hurt E (2002) 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. EMBO J 21: 5539–5547.
[15]  Peng W. T, Robinson M. D, Mnaimneh S, Krogan N. J, Cagney G, et al. (2003) A panoramic view of yeast noncoding RNA processing. Cell 113: 919–933.
[16]  Schafer T, Strauss D, Petfalski E, Tollervey D, Hurt E (2003) The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J 22: 1370–1380.
[17]  Wade C. H, Umbarger M. A, McAlear M. A (2006) The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast 23: 293–306.
[18]  Stage-Zimmermann T, Schmidt U, Silver P. A (2000) Factors affecting nuclear export of the 60S ribosomal subunit in vivo. Mol Biol Cell 11: 3777–3789.
[19]  Moy T. I, Silver P. A (1999) Nuclear export of the small ribosomal subunit requires the ran-GTPase cycle and certain nucleoporins. Genes Dev 13: 2118–2133.
[20]  Hurt E, Hannus S, Schmelzl B, Lau D, Tollervey D, et al. (1999) A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. J Cell Biol 144: 389–401.
[21]  Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum Mol Genet 16 Spec No 1: R21–R27.
[22]  Kiss T, Fayet E, Jady B. E, Richard P, Weber M (2006) Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. Cold Spring Harb Symp Quant Biol 71: 407–417.
[23]  Smith C. M, Steitz J. A (1997) Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89: 669–672.
[24]  Adachi K, Soeta-Saneyoshi C, Sagara H, Iwakura Y (2007) Crucial role of Bysl in mammalian preimplantation development as an integral factor for 40S ribosome biogenesis. Mol Cell Biol 27: 2202–2214.
[25]  Coute Y, Kindbeiter K, Belin S, Dieckmann R, Duret L, et al. (2008) ISG20L2, a novel vertebrate nucleolar exoribonuclease involved in ribosome biogenesis. Mol Cell Proteomics 7: 546–559.
[26]  Ginisty H, Amalric F, Bouvet P (1998) Nucleolin functions in the first step of ribosomal RNA processing. EMBO J 17: 1476–1486.
[27]  Holzel M, Grimm T, Rohrmoser M, Malamoussi A, Harasim T, et al. (2007) The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing. Nucleic Acids Res 35: 789–800.
[28]  Holzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, et al. (2005) Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. J Cell Biol 170: 367–378.
[29]  Prieto J. L, McStay B (2007) Recruitment of factors linking transcription and processing of pre-rRNA to NOR chromatin is UBF-dependent and occurs independent of transcription in human cells. Genes Dev 21: 2041–2054.
[30]  Rohrmoser M, Holzel M, Grimm T, Malamoussi A, Harasim T, et al. (2007) Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit. Mol Cell Biol 27: 3682–3694.
[31]  Rouquette J, Choesmel V, Gleizes P. E (2005) Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. Embo J 24: 2862–2872.
[32]  Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, et al. (2003) Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299: 259–262.
[33]  Strezoska Z, Pestov D. G, Lau L. F (2000) Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5.8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 20: 5516–5528.
[34]  Thomas F, Kutay U (2003) Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J Cell Sci 116: 2409–2419.
[35]  Trotta C. R, Lund E, Kahan L, Johnson A. W, Dahlberg J. E (2003) Coordinated nuclear export of 60S ribosomal subunits and NMD3 in vertebrates. EMBO J 22: 2841–2851.
[36]  Turner A. J, Knox A. A, Prieto J. L, McStay B, Watkins N. J (2009) A novel small-subunit processome assembly intermediate that contains the U3 snoRNP, nucleolin, RRP5, and DBP4. Mol Cell Biol 29: 3007–3017.
[37]  Wang Y, Liu J, Zhao H, Lu W, Zhao J, et al. (2007) Human 1A6/DRIM, the homolog of yeast Utp20, functions in the 18S rRNA processing. Biochim Biophys Acta 1773: 863–868.
[38]  Westendorf J. M, Konstantinov K. N, Wormsley S, Shu M. D, Matsumoto-Taniura N, et al. (1998) M phase phosphoprotein 10 is a human U3 small nucleolar ribonucleoprotein component. Mol Biol Cell 9: 437–449.
[39]  Richard G. F, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72: 686–727.
[40]  Peculis B. A, Steitz J. A (1993) Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73: 1233–1245.
[41]  Srivastava L, Lapik Y. R, Wang M, Pestov D. G (2010) Mammalian DEAD box protein Ddx51 acts in 3′ end maturation of 28S rRNA by promoting the release of U8 snoRNA. Mol Cell Biol 30: 2947–2956.
[42]  Miller K. G, Sollner-Webb B (1981) Transcription of mouse rRNA genes by RNA polymerase I: in vitro and in vivo initiation and processing sites. Cell 27: 165–174.
[43]  Craig N, Kass S, Sollner-Webb B (1987) Nucleotide sequence determining the first cleavage site in the processing of mouse precursor rRNA. Proc Natl Acad Sci U S A 84: 629–633.
[44]  Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16: 369–377.
[45]  Zemp I, Wild T, O'Donohue M. F, Wandrey F, Widmann B, et al. (2009) Distinct cytoplasmic maturation steps of 40S ribosomal subunit precursors require hRio2. J Cell Biol 185: 1167–1180.
[46]  Carpenter A. E, Jones T. R, Lamprecht M. R, Clarke C, Kang I. H, et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100.
[47]  Volarevic S, Stewart M. J, Ledermann B, Zilberman F, Terracciano L, et al. (2000) Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288: 2045–2047.
[48]  Ferreira-Cerca S, Poll G, Gleizes P. E, Tschochner H, Milkereit P (2005) Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell 20: 263–275.
[49]  Dez C, Tollervey D (2004) Ribosome synthesis meets the cell cycle. Curr Opin Microbiol 7: 631–637.
[50]  Shirai C, Takai T, Nariai M, Horigome C, Mizuta K (2004) Ebp2p, the yeast homolog of Epstein-Barr virus nuclear antigen 1-binding protein 2, interacts with factors of both the 60 S and the 40 s ribosomal subunit assembly. J Biol Chem 279: 25353–25358.
[51]  Sykes M. T, Williamson J. R (2009) A complex assembly landscape for the 30S ribosomal subunit. Annu Rev Biophys 38: 197–215.
[52]  Robledo S, Idol R. A, Crimmins D. L, Ladenson J. H, Mason P. J, et al. (2008) The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14: 1918–1929.
[53]  Lam Y. W, Lamond A. I, Mann M, Andersen J. S (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17: 749–760.
[54]  Stavreva D. A, Kawasaki M, Dundr M, Koberna K, Muller W. G, et al. (2006) Potential roles for ubiquitin and the proteasome during ribosome biogenesis. Mol Cell Biol 26: 5131–5145.
[55]  Sha Z, Brill L. M, Cabrera R, Kleifeld O, Scheliga J. S, et al. (2009) The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol Cell 36: 141–152.
[56]  Lund E, Guttinger S, Calado A, Dahlberg J. E, Kutay U (2004) Nuclear export of microRNA precursors. Science 303: 95–98.
[57]  Gadal O, Strauss D, Kessl J, Trumpower B, Tollervey D, et al. (2001) Nuclear export of 60s ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p. Mol Cell Biol 21: 3405–3415.
[58]  Ho J. H, Kallstrom G, Johnson A. W (2000) Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J Cell Biol 151: 1057–1066.
[59]  Bohnsack M. T, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10: 185–191.
[60]  Yi R, Qin Y, Macara I. G, Cullen B. R (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17: 3011–3016.
[61]  Orom U. A, Nielsen F. C, Lund A. H (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30: 460–471.
[62]  Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15: 607–660.
[63]  Bohnsack M. T, Regener K, Schwappach B, Saffrich R, Paraskeva E, et al. (2002) Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J 21: 6205–6215.
[64]  Calado A, Treichel N, Muller E. C, Otto A, Kutay U (2002) Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J 21: 6216–6224.
[65]  Bradatsch B, Katahira J, Kowalinski E, Bange G, Yao W, et al. (2007) Arx1 functions as an unorthodox nuclear export receptor for the 60S preribosomal subunit. Mol Cell 27: 767–779.
[66]  Hung N. J, Lo K. Y, Patel S. S, Helmke K, Johnson A. W (2008) Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast. Mol Biol Cell 19: 735–744.
[67]  Yao W, Roser D, Kohler A, Bradatsch B, Bassler J, et al. (2007) Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2. Mol Cell 26: 51–62.
[68]  Yao W, Lutzmann M, Hurt E (2008) A versatile interaction platform on the Mex67-Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO J 27: 6–16.
[69]  Maggi L. B Jr, Kuchenruether M, Dadey D. Y, Schwope R. M, Grisendi S, et al. (2008) Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol 28: 7050–7065.
[70]  Savkur R. S, Olson M. O (1998) Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res 26: 4508–4515.
[71]  Yu Y, Maggi L. B Jr, Brady S. N, Apicelli A. J, Dai M. S, et al. (2006) Nucleophosmin is essential for ribosomal protein L5 nuclear export. Mol Cell Biol 26: 3798–3809.
[72]  Ahmad Y, Boisvert F. M, Gregor P, Cobley A, Lamond A. I (2009) NOPdb: Nucleolar Proteome Database–2008 update. Nucleic Acids Res 37: D181–D184.
[73]  Andersen J. S, Lam Y. W, Leung A. K, Ong S. E, Lyon C. E, et al. (2005) Nucleolar proteome dynamics. Nature 433: 77–83.
[74]  Dai M. S, Lu H (2008) Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 105: 670–677.
[75]  Freed E. F, Bleichert F, Dutca L. M, Baserga S. J (2010) When ribosomes go bad: diseases of ribosome biogenesis. Mol Biosyst 6: 481–493.
[76]  Narla A, Ebert B. L (2010) Ribosomopathies: human disorders of ribosome dysfunction. Blood 115: 3196–3205.
[77]  Glatter T, Wepf A, Aebersold R, Gstaiger M (2009) An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 5: 237.
[78]  Kutay U, Hartmann E, Treichel N, Calado A, Carmo-Fonseca M, et al. (2000) Identification of two novel RanGTP-binding proteins belonging to the importin beta superfamily. J Biol Chem 275: 40163–40168.
[79]  Jackson R. J, Napthine S, Brierley I (2001) Development of a tRNA-dependent in vitro translation system. RNA 7: 765–773.
[80]  Kutay U, Lipowsky G, Izaurralde E, Bischoff F. R, Schwarzmaier P, et al. (1998) Identification of a tRNA-specific nuclear export receptor. Mol Cell 1: 359–369.
[81]  Pasquinelli A. E, Dahlberg J. E, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1: 957–967.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133