全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Non-Canonical NF-κB Activation and Abnormal B Cell Accumulation in Mice Expressing Ubiquitin Protein Ligase-Inactive c-IAP2

DOI: 10.1371/journal.pbio.1000518

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chromosomal translocations between loci encoding MALT1 and c-IAP2 are common in MALT lymphomas. The resulting fusion proteins lack the c-IAP2 RING domain, the region responsible for its ubiquitin protein ligase (E3) activity. Ectopic expression of the fusion protein activates the canonical NF-κB signaling cascade, but how it does so is controversial and how it promotes MALT lymphoma is unknown. Considering recent reports implicating c-IAP1 and c-IAP2 E3 activity in repression of non-canonical NF-κB signaling, we asked if the c-IAP2/MALT fusion protein can initiate non-canonical NF-κB activation. Here we show that in addition to canonical activation, the fusion protein stabilizes NIK and activates non-canonical NF-κB. Canonical but not non-canonical activation depended on MALT1 paracaspase activity, and expression of E3-inactive c-IAP2 activated non-canonical NF-κB. Mice in which endogenous c-IAP2 was replaced with an E3-inactive mutant accumulated abnormal B cells with elevated non-canonical NF-κB and had increased numbers of B cells with a marginal zone phenotype, gut-associated lymphoid hyperplasia, and other features of MALT lymphoma. Thus, the c-IAP2/MALT1 fusion protein activates NF-κB by two distinct mechanisms, and loss of c-IAP2 E3 activity in vivo is sufficient to induce abnormalities common to MALT lymphoma.

References

[1]  Srinivasula S. M, Ashwell J. D (2008) IAPs: what's in a name? Mol Cell 30: 123–135.
[2]  Eckelman B. P, Salvesen G. S (2006) The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem S 281: 3254–3260.
[3]  Rothe M, Pan M. G, Henzel W. J, Ayres T. M, Goeddel D. V (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83: 1243–1252.
[4]  Li X, Yang Y, Ashwell J. D (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416: 345–347.
[5]  Wu C. J, Conze D. B, Li X, Ying S. X, Hanover J. A, et al. (2005) TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J 24: 1886–1898.
[6]  Zhao Y, Conze D. B, Hanover J. A, Ashwell J. D (2007) Tumor necrosis factor receptor 2 signaling induces selective c-IAP1-dependent ASK1 ubiquitination and terminates mitogen-activated protein kinase signaling. J Biol Chem 282: 7777–7782.
[7]  Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006: re13.
[8]  Hayden M. S, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132: 344–362.
[9]  Muller J. R, Siebenlist U (2003) Lymphotoxin beta receptor induces sequential activation of distinct NF-kappa B factors via separate signaling pathways. J Biol Chem 278: 12006–12012.
[10]  Coope H. J, Atkinson P. G, Huhse B, Belich M, Janzen J, et al. (2002) CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 21: 5375–5385.
[11]  Dobrzanski P, Ryseck R. P, Bravo R (1994) Differential interactions of Rel-NF-kappa B complexes with I kappa B alpha determine pools of constitutive and inducible NF-kappa B activity. EMBO J 13: 4608–4616.
[12]  Xiao G, Harhaj E. W, Sun S. C (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7: 401–409.
[13]  Yin L, Wu L, Wesche H, Arthur C. D, White J. M, et al. (2001) Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 291: 2162–2165.
[14]  Senftleben U, Cao Y, Xiao G, Greten F. R, Krahn G, et al. (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293: 1495–1499.
[15]  Chu Z. L, McKinsey T. A, Liu L, Gentry J. J, Malim M. H, et al. (1997) Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A 94: 10057–10062.
[16]  Hu S, Alcivar A, Qu L, Tang J, Yang X (2006) CIAP2 inhibits antigen receptor signaling by targeting Bcl10 for degradation. Cell Cycle 5: 1438–1442.
[17]  Hu S, Du M. Q, Park S. M, Alcivar A, Qu L, et al. (2006) cIAP2 is a ubiquitin protein ligase for BCL10 and is dysregulated in mucosa-associated lymphoid tissue lymphomas. J Clin Invest S 116: 174–181.
[18]  Varfolomeev E, Blankenship J. W, Wayson S. M, Fedorova A. V, Kayagaki N, et al. (2007) IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131: 669–681.
[19]  Tang E. D, Wang C. Y, Xiong Y, Guan K. L (2003) A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 278: 37297–37305.
[20]  Mahoney D. J, Cheung H. H, Mrad R. L, Plenchette S, Simard C, et al. (2008) Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci U S A 105: 11778–11783.
[21]  Conze D. B, Albert L, Ferrick D. A, Goeddel D. V, Yeh W. C, et al. (2005) Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo. Mol Cell Biol 25: 3348–3356.
[22]  Conte D, Holcik M, Lefebvre C. A, Lacasse E, Picketts D. J, et al. (2006) Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol Cell Biol 26: 699–708.
[23]  Varfolomeev E, Goncharov T, Fedorova A. V, Dynek J. N, Zobel K, et al. (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 283: 24295–24299.
[24]  Vince J. E, Chau D, Callus B, Wong W. W, Hawkins C. J, et al. (2008) TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol 182: 171–184.
[25]  Vince J. E, Wong W. W, Khan N, Feltham R, Chau D, et al. (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131: 682–693.
[26]  Zarnegar B. J, Wang Y, Mahoney D. J, Dempsey P. W, Cheung H. H, et al. (2008) Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9: 1371–1378.
[27]  Vallabhapurapu S, Matsuzawa A, Zhang W, Tseng P. H, Keats J. J, et al. (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9: 1364–1370.
[28]  Keats J. J, Fonseca R, Chesi M, Schop R, Baker A, et al. (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12: 131–144.
[29]  Annunziata C. M, Davis R. E, Demchenko Y, Bellamy W, Gabrea A, et al. (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12: 115–130.
[30]  He J. Q, Zarnegar B, Oganesyan G, Saha S. K, Yamazaki S, et al. (2006) Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J Exp Med 203: 2413–2418.
[31]  Grech A. P, Amesbury M, Chan T, Gardam S, Basten A, et al. (2004) TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 21: 629–642.
[32]  Xie P, Stunz L. L, Larison K. D, Yang B, Bishop G. A (2007) Tumor necrosis factor receptor-associated factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 27: 253–267.
[33]  Gardam S, Sierro F, Basten A, Mackay F, Brink R (2008) TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 28: 391–401.
[34]  Spencer J, Finn T, Pulford K. A, Mason D. Y, Isaacson P. G (1985) The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin Exp Immunol 62: 607–612.
[35]  Inagaki H (2007) Mucosa-associated lymphoid tissue lymphoma: molecular pathogenesis and clinicopathological significance. Pathol Int 57: 474–484.
[36]  Isaacson P. G, Du M. Q (2004) MALT lymphoma: from morphology to molecules. Nat Rev Cancer S 4: 644–653.
[37]  Kingeter L. M, Schaefer B. C (2010) Malt1 and cIAP2-Malt1 as effectors of NF-kappaB activation: kissing cousins or distant relatives? Cell Signal 22: 9–22.
[38]  Dierlamm J, Baens M, Wlodarska I, Stefanova-Ouzounova M, Hernandez J. M, et al. (1999) The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93: 3601–3609.
[39]  Murga Penas E. M, Hinz K, Roser K, Copie-Bergman C, Wlodarska I, et al. (2003) Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia 17: 2225–2229.
[40]  Ye H, Liu H, Attygalle A, Wotherspoon A. C, Nicholson A. G, et al. (2003) Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood 102: 1012–1018.
[41]  Uren A. G, O'Rourke K, Aravind L. A, Pisabarro M. T, Seshagiri S, et al. (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6: 961–967.
[42]  Baens M, Fevery S, Sagaert X, Noels H, Hagens S, et al. (2006) Selective expansion of marginal zone B cells in Emicro-API2-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination. Cancer Res S 66: 5270–5277.
[43]  Ho L, Davis R. E, Conne B, Chappuis R, Berczy M, et al. (2005) MALT1 and the API2-MALT1 fusion act between CD40 and IKK and confer NF-kappa B-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood 105: 2891–2899.
[44]  Noels H, van Loo G, Hagens S, Broeckx V, Beyaert R, et al. (2007) A novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-kappaB activation by API2middle dotMALT1 fusions. J Biol Chem 282: 10180–10189.
[45]  Gyrd-Hansen M, Darding M, Miasari M, Santoro M. M, Zender L, et al. (2008) IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 10: 1309–1317.
[46]  Zhou H, Du M. Q, Dixit V. M (2005) Constitutive NF-kappaB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 7: 425–431.
[47]  Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, et al. (2008) T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 9: 263–271.
[48]  Yang Y, Fang S, Jensen J. P, Weissman A. M, Ashwell J. D (2000) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288: 874–877.
[49]  Csomos R. A, Brady G. F, Duckett C. S (2009) Enhanced cytoprotective effects of the inhibitor of apoptosis protein cellular IAP1 through stabilization with TRAF2. J Biol Chem 284: 20531–20539.
[50]  Holcik M, Lefebvre C. A, Hicks K, Korneluk R. G (2002) Cloning and characterization of the rat homologues of the Inhibitor of Apoptosis protein 1, 2, and 3 genes. BMC Genomics 3: 5.
[51]  Izumiyama K, Nakagawa M, Yonezumi M, Kasugai Y, Suzuki R, et al. (2003) Stability and subcellular localization of API2-MALT1 chimeric protein involved in t(11;18) (q21;q21) MALT lymphoma. Oncogene S 22: 8085–8092.
[52]  Martin F, Kearney J. F (2002) Marginal-zone B cells. Nat Rev Immunol 2: 323–335.
[53]  Lucas P. C, Yonezumi M, Inohara N, McAllister-Lucas L. M, Abazeed M. E, et al. (2001) Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem S 276: 19012–19019.
[54]  Garrison J. B, Samuel T, Reed J. C (2009) TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB. Oncogene 28: 1584–1593.
[55]  De Smaele E, Zazzeroni F, Papa S, Nguyen D. U, Jin R, et al. (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414: 308–313.
[56]  de Martin R, Vanhove B, Cheng Q, Hofer E, Csizmadia V, et al. (1993) Cytokine-inducible expression in endothelial cells of an I kappa B alpha-like gene is regulated by NF kappa B. EMBO J 12: 2773–2779.
[57]  Kwak E. L, Larochelle D. A, Beaumont C, Torti S. V, Torti F. M (1995) Role for NF-kappa B in the regulation of ferritin H by tumor necrosis factor-alpha. J Biol Chem 270: 15285–15293.
[58]  Grossmann M, O'Reilly L. A, Gugasyan R, Strasser A, Adams J. M, et al. (2000) The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J 19: 6351–6360.
[59]  Sasaki Y, Calado D. P, Derudder E, Zhang B, Shimizu Y, et al. (2008) NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci U S A 105: 10883–10888.
[60]  Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H (2010) Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 38: 101–113.
[61]  Mackay F, Woodcock S. A, Lawton P, Ambrose C, Baetscher M, et al. (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190: 1697–1710.
[62]  Stoffel A, Chaurushiya M, Singh B, Levine A. J (2004) Activation of NF-kappaB and inhibition of p53-mediated apoptosis by API2/mucosa-associated lymphoid tissue 1 fusions promote oncogenesis. Proc Natl Acad Sci U S A 101: 9079–9084.
[63]  Li Z, Wang H, Xue L, Shin D. M, Roopenian D, et al. (2009) Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 114: 4158–4168.
[64]  Zhu G, Wu C. J, Zhao Y, Ashwell J. D (2007) Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17: 1438–1443.
[65]  Mittelstadt P. R, Ashwell J. D (2003) Disruption of glucocorticoid receptor exon 2 yields a ligand-responsive C-terminal fragment that regulates gene expression. Mol Endocrinol 17: 1534–1542.
[66]  Abbondanzo S. J, Gadi I, Stewart C. L (1993) Derivation of embryonic stem cell lines. Methods Enzymol 225: 803–823.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133