DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.
References
[1]
Bernstein B. E, Meissner A, Lander E. S (2007) The mammalian epigenome. Cell 128: 669–681.
[2]
Lister R, Pelizzola M, Dowen R. H, Hawkins R. D, Hon G, et al. (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature.
[3]
Feinberg A. P (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447: 433–440.
[4]
Cokus S. J, Feng S, Zhang X, Chen Z, Merriman B, et al. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215–219.
[5]
Lister R, O'Malley R. C, Tonti-Filippini J, Gregory B. D, Berry C. C, et al. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: 523–536.
[6]
Meissner A, Mikkelsen T. S, Gu H, Wernig M, Hanna J, et al. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454: 766–770.
[7]
Eckhardt F, Lewin J, Cortese R, Rakyan V. K, Attwood J, et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38: 1378–1385.
[8]
Down T. A, Rakyan V. K, Turner D. J, Flicek P, Li H, et al. (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26: 779–785.
[9]
Laurent L, Wong E, Li G, Huynh T, Tsirigos A, et al. (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20: 320–331.
[10]
Laird P. W (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11: 191–203.
[11]
Wang J, Wang W, Li R, Li Y, Tian G, et al. (2008) The diploid genome sequence of an Asian individual. Nature 456: 60–65.
[12]
Frommer M, McDonald L. E, Millar D. S, Collis C. M, Watt F, et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89: 1827–1831.
[13]
Suzuki M. M, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465–476.
[14]
Bennett E. A, Keller H, Mills R. E, Schmidt S, Moran J. V, et al. (2008) Active Alu retrotransposons in the human genome. Genome Res 18: 1875–1883.
[15]
Walsh C. P, Chaillet J. R, Bestor T. H (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20: 116–117.
[16]
Gaudet F, Hodgson J. G, Eden A, Jackson-Grusby L, Dausman J, et al. (2003) Induction of tumors in mice by genomic hypomethylation. Science 300: 489–492.
[17]
Doi A, Park I. H, Wen B, Murakami P, Aryee M. J, et al. (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41: 1350–1353.
[18]
Frazer K. A, Ballinger D. G, Cox D. R, Hinds D. A, Stuve L. L, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.
[19]
Barrett T, Troup D. B, Wilhite S. E, Ledoux P, Rudnev D, et al. (2007) NCBI GEO: mining tens of millions of expression profiles–database and tools update. Nucleic Acids Res 35: D760–D765.
[20]
Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2: 21–32.
[21]
Bell C. G, Beck S (2009) Advances in the identification and analysis of allele-specific expression. Genome Med 1: 56.
[22]
Zheng Z, Zheng H, Yan W (2007) Fank1 is a testis-specific gene encoding a nuclear protein exclusively expressed during the transition from the meiotic to the haploid phase of spermatogenesis. Gene Expr Patterns 7: 777–783.
[23]
Morison I. M, Ramsay J. P, Spencer H. G (2005) A census of mammalian imprinting. Trends Genet 21: 457–465.
[24]
Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, et al. (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40: 904–908.
[25]
Serre D, Gurd S, Ge B, Sladek R, Sinnett D, et al. (2008) Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genet 4: e1000006. doi:10.1371/journal.pgen.1000006.
[26]
Christov C. P, Trivier E, Krude T (2008) Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br J Cancer 98: 981–988.
[27]
Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, et al. (2009) Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16: 996–1001.
[28]
Rollins R. A, Haghighi F, Edwards J. R, Das R, Zhang M. Q, et al. (2006) Large-scale structure of genomic methylation patterns. Genome Res 16: 157–163.
[29]
Lander E. S, Linton L. M, Birren B, Nusbaum C, Zody M. C, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
[30]
(2008) Moving AHEAD with an international human epigenome project. Nature 454: 711–715.
[31]
Hayatsu H, Tsuji K, Negishi K (2006) Does urea promote the bisulfite-mediated deamination of cytosine in DNA?Investigation aiming at speeding-up the procedure for DNA methylation analysis. Nucleic Acids Symp Ser (Oxf). pp. 69–70.
[32]
Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714.