[1] | Diaz-Castillo C, Golic K. G (2007) Evolution of gene sequence in response to chromosomal location. Genetics 177: 359–374.
|
[2] | Linardopoulou E. V, Williams E. M, Fan Y, Friedman C, Young J. M, et al. (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94–100.
|
[3] | Hall A. E, Keith K. C, Hall S. E, Copenhaver G. P, Preuss D (2004) The rapidly evolving field of plant centromeres. Curr Opin Plant Biol 7: 108–114.
|
[4] | Hall S. E, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13: 195–205.
|
[5] | Teytelman L, Eisen M. B, Rine J (2008) Silent but not static: accelerated base-pair substitution in silenced chromatin of budding yeasts. PLoS Genet 4: e1000247. doi:10.1371/journal.pgen.1000247.
|
[6] | Henikoff S, Ahmad K, Malik H. S (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.
|
[7] | Rusche L. N, Kirchmaier A. L, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72: 481–516.
|
[8] | Dover G. A, Flavell R. B (1984) Molecular coevolution: DNA divergence and the maintenance of function. Cell 38: 622–623.
|
[9] | Simpson P (2002) Evolution of development in closely related species of flies and worms. Nat Rev Genet 3: 907–917.
|
[10] | Gasch A. P, Moses A. M, Chiang D. Y, Fraser H. B, Berardini M, et al. (2004) Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol 2: e398. doi:10.1371/journal.pbio.0020398.
|
[11] | Evers R, Grummt I (1995) Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I. Proc Natl Acad Sci U S A 92: 5827–5831.
|
[12] | Shaw P. J, Wratten N. S, McGregor A. P, Dover G. A (2002) Coevolution in bicoid-dependent promoters and the inception of regulatory incompatibilities among species of higher Diptera. Evol Dev 4: 265–277.
|
[13] | Bonneton F, Shaw P. J, Fazakerley C, Shi M, Dover G. A (1997) Comparison of bicoid-dependent regulation of hunchback between Musca domestica and Drosophila melanogaster. Mech Dev 66: 143–156.
|
[14] | McGregor A. P, Shaw P. J, Hancock J. M, Bopp D, Hediger M, et al. (2001) Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol Dev 3: 397–407.
|
[15] | Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116: 9–22.
|
[16] | Haber J. E (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32: 561–599.
|
[17] | Rusche L. N, Kirchmaier A. L, Rine J (2002) Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 13: 2207–2222.
|
[18] | Hecht A, Laroche T, Strahl-Bolsinger S, Gasser S. M, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.
|
[19] | Hoppe G. J, Tanny J. C, Rudner A. D, Gerber S. A, Danaie S, et al. (2002) Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 22: 4167–4180.
|
[20] | Bose M. E, McConnell K. H, Gardner-Aukema K. A, Muller U, Weinreich M, et al. (2004) The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol Cell Biol 24: 774–786.
|
[21] | Stavenhagen J. B, Zakian V. A (1994) Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev 8: 1411–1422.
|
[22] | Louis E. J (1995) The chromosome ends of Saccharomyces cerevisiae. Yeast 11: 1553–1573.
|
[23] | Pryde F. E, Louis E. J (1999) Limitations of silencing at native yeast telomeres. EMBO J 18: 2538–2550.
|
[24] | Gallagher J. E, Babiarz J. E, Teytelman L, Wolfe K. H, Rine J (2009) Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces. Genetics 181: 1477–1491.
|
[25] | Kellis M, Patterson N, Endrizzi M, Birren B, Lander E. S (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–254.
|
[26] | Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71–76.
|
[27] | Scannell D. R, Byrne K. P, Gordon J. L, Wong S, Wolfe K. H (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440: 341–345.
|
[28] | Scannell D. R, Frank A. C, Conant G. C, Byrne K. P, Woolfit M, et al. (2007) Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci U S A 104: 8397–8402.
|
[29] | Greig D (2009) Reproductive isolation in Saccharomyces. Heredity 102: 39–44.
|
[30] | Liti G, Barton D. B, Louis E. J (2006) Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174: 839–850.
|
[31] | Lee M. G, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–35.
|
[32] | Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, et al. (1985) Functional homology of mammalian and yeast RAS genes. Cell 40: 19–26.
|
[33] | Basson M. E, Thorsness M, Finer-Moore J, Stroud R. M, Rine J (1988) Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol Cell Biol 8: 3797–3808.
|
[34] | Wang A. Y, Schulze J. M, Skordalakes E, Gin J. W, Berger J. M, et al. (2009) Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation. Proc Natl Acad Sci U S A 106: 21573–21578.
|
[35] | Kirchmaier A. L, Rine J (2006) Cell cycle requirements in assembling silent chromatin in Saccharomyces cerevisiae. Mol Cell Biol 26: 852–862.
|
[36] | Longtine M. S, McKenzie A 3rd, Demarini D. J, Shah N. G, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961.
|
[37] | Moazed D, Kistler A, Axelrod A, Rine J, Johnson A. D (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci U S A 94: 2186–2191.
|
[38] | Chang J. F, Hall B. E, Tanny J. C, Moazed D, Filman D, et al. (2003) Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3. Structure 11: 637–649.
|
[39] | Gottschling D. E, Aparicio O. M, Billington B. L, Zakian V. A (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762.
|
[40] | Palladino F, Laroche T, Gilson E, Axelrod A, Pillus L, et al. (1993) SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75: 543–555.
|
[41] | Sperling A. S, Grunstein M (2009) Histone H3 N-terminus regulates higher order structure of yeast heterochromatin. Proc Natl Acad Sci U S A 106: 13153–13159.
|
[42] | Liti G, Peruffo A, James S. A, Roberts I. N, Louis E. J (2005) Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22: 177–192.
|
[43] | Martin O. C, DeSevo C. G, Guo B. Z, Koshland D. E, Dunham M. J, et al. (2009) Telomere behavior in a hybrid yeast. Cell Res 19: 910–912.
|
[44] | Martino F, Kueng S, Robinson P, Tsai-Pflugfelder M, van Leeuwen F, et al. (2009) Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. Mol Cell 33: 323–334.
|
[45] | Fox C. A, Ehrenhofer-Murray A. E, Loo S, Rine J (1997) The origin recognition complex, SIR1, and the S phase requirement for silencing. Science 276: 1547–1551.
|
[46] | Triolo T, Sternglanz R (1996) Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381: 251–253.
|
[47] | Sussel L, Vannier D, Shore D (1993) Epigenetic switching of transcriptional states: cis- and trans-acting factors affecting establishment of silencing at the HMR locus in Saccharomyces cerevisiae. Mol Cell Biol 13: 3919–3928.
|
[48] | Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15: 568–573.
|
[49] | Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49: 169–181.
|
[50] | Astrom S. U, Rine J (1998) Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis. Genetics 148: 1021–1029.
|
[51] | Moretti P, Shore D (2001) Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol Cell Biol 21: 8082–8094.
|
[52] | Hsu H. C, Stillman B, Xu R. M (2005) Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci U S A 102: 8519–8524.
|
[53] | Hou Z, Bernstein D. A, Fox C. A, Keck J. L (2005) Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proc Natl Acad Sci U S A 102: 8489–8494.
|
[54] | Gasser S. M, Hediger F, Taddei A, Neumann F. R, Gartenberg M. R (2004) The function of telomere clustering in yeast: the circe effect. Cold Spring Harb Symp Quant Biol 69: 327–337.
|
[55] | Bayes J. J, Malik H. S (2009) Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326: 1538–1541.
|
[56] | Brideau N. J, Flores H. A, Wang J, Maheshwari S, Wang X, et al. (2006) Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314: 1292–1295.
|
[57] | Vermaak D, Henikoff S, Malik H. S (2005) Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet 1: 96–108. doi:10.1371/journal.pgen.0010009.
|
[58] | Ferree P. M, Barbash D. A (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7: e1000234. doi:10.1371/journal.pbio.1000234.
|
[59] | Grewal S. I, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301: 798–802.
|
[60] | Hickman M. A, Rusche L. N (2009) The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. PLoS Genet 5: e1000710. doi:10.1371/journal.pgen.1000710.
|
[61] | Zill O. A, Rine J (2008) Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts. Genes Dev 22: 1704–1716.
|
[62] | Goldstein A. L, McCusker J. H (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553.
|
[63] | Sikorski R. S, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
|
[64] | Pillus L, Rine J (1989) Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59: 637–647.
|
[65] | Schmitt M. E, Brown T. A, Trumpower B. L (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18: 3091–3092.
|
[66] | Ozaydin B, Rine J (2010) Expanded roles of the origin recognition complex in the architecture and function of silenced chromatin in Saccharomyces cerevisiae. Mol Cell Biol 30: 626–639.
|
[67] | Davies B. S, Wang H. S, Rine J (2005) Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Mol Cell Biol 25: 7375–7385.
|
[68] | Lefrancois P, Euskirchen G. M, Auerbach R. K, Rozowsky J, Gibson T, et al. (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10: 37.
|
[69] | Quail M. A, Kozarewa I, Smith F, Scally A, Stephens P. J, et al. (2008) A large genome center's improvements to the Illumina sequencing system. Nat Methods 5: 1005–1010.
|
[70] | Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858.
|
[71] | Teytelman L, Ozaydin B, Zill O, Lefrancois P, Snyder M, et al. (2009) Impact of chromatin structures on DNA processing for genomic analyses. PLoS One 4: e6700. doi:10.1371/journal.pone.0006700.
|
[72] | Zhang Y, Liu T, Meyer C. A, Eeckhoute J, Johnson D. S, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137.
|
[73] | Altschul S. F, Gish W, Miller W, Myers E. W, Lipman D. J (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
|
[74] | Bradley R. K, Roberts A, Smoot M, Juvekar S, Do J, et al. (2009) Fast statistical alignment. PLoS Comput Biol 5: e1000392. doi:10.1371/journal.pcbi.1000392.
|
[75] | Wernersson R, Pedersen A. G (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31: 3537–3539.
|
[76] | Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
|
[77] | Cliften P. F, Fulton R. S, Wilson R. K, Johnston M (2006) After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172: 863–872.
|