全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Co-Evolution of Transcriptional Silencing Proteins and the DNA Elements Specifying Their Assembly

DOI: 10.1371/journal.pbio.1000550

Full-Text   Cite this paper   Add to My Lib

Abstract:

Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1) proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.

References

[1]  Diaz-Castillo C, Golic K. G (2007) Evolution of gene sequence in response to chromosomal location. Genetics 177: 359–374.
[2]  Linardopoulou E. V, Williams E. M, Fan Y, Friedman C, Young J. M, et al. (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437: 94–100.
[3]  Hall A. E, Keith K. C, Hall S. E, Copenhaver G. P, Preuss D (2004) The rapidly evolving field of plant centromeres. Curr Opin Plant Biol 7: 108–114.
[4]  Hall S. E, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13: 195–205.
[5]  Teytelman L, Eisen M. B, Rine J (2008) Silent but not static: accelerated base-pair substitution in silenced chromatin of budding yeasts. PLoS Genet 4: e1000247. doi:10.1371/journal.pgen.1000247.
[6]  Henikoff S, Ahmad K, Malik H. S (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098–1102.
[7]  Rusche L. N, Kirchmaier A. L, Rine J (2003) The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72: 481–516.
[8]  Dover G. A, Flavell R. B (1984) Molecular coevolution: DNA divergence and the maintenance of function. Cell 38: 622–623.
[9]  Simpson P (2002) Evolution of development in closely related species of flies and worms. Nat Rev Genet 3: 907–917.
[10]  Gasch A. P, Moses A. M, Chiang D. Y, Fraser H. B, Berardini M, et al. (2004) Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol 2: e398. doi:10.1371/journal.pbio.0020398.
[11]  Evers R, Grummt I (1995) Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I. Proc Natl Acad Sci U S A 92: 5827–5831.
[12]  Shaw P. J, Wratten N. S, McGregor A. P, Dover G. A (2002) Coevolution in bicoid-dependent promoters and the inception of regulatory incompatibilities among species of higher Diptera. Evol Dev 4: 265–277.
[13]  Bonneton F, Shaw P. J, Fazakerley C, Shi M, Dover G. A (1997) Comparison of bicoid-dependent regulation of hunchback between Musca domestica and Drosophila melanogaster. Mech Dev 66: 143–156.
[14]  McGregor A. P, Shaw P. J, Hancock J. M, Bopp D, Hediger M, et al. (2001) Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution. Evol Dev 3: 397–407.
[15]  Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116: 9–22.
[16]  Haber J. E (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32: 561–599.
[17]  Rusche L. N, Kirchmaier A. L, Rine J (2002) Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol Biol Cell 13: 2207–2222.
[18]  Hecht A, Laroche T, Strahl-Bolsinger S, Gasser S. M, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583–592.
[19]  Hoppe G. J, Tanny J. C, Rudner A. D, Gerber S. A, Danaie S, et al. (2002) Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol 22: 4167–4180.
[20]  Bose M. E, McConnell K. H, Gardner-Aukema K. A, Muller U, Weinreich M, et al. (2004) The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol Cell Biol 24: 774–786.
[21]  Stavenhagen J. B, Zakian V. A (1994) Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev 8: 1411–1422.
[22]  Louis E. J (1995) The chromosome ends of Saccharomyces cerevisiae. Yeast 11: 1553–1573.
[23]  Pryde F. E, Louis E. J (1999) Limitations of silencing at native yeast telomeres. EMBO J 18: 2538–2550.
[24]  Gallagher J. E, Babiarz J. E, Teytelman L, Wolfe K. H, Rine J (2009) Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces. Genetics 181: 1477–1491.
[25]  Kellis M, Patterson N, Endrizzi M, Birren B, Lander E. S (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423: 241–254.
[26]  Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, et al. (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301: 71–76.
[27]  Scannell D. R, Byrne K. P, Gordon J. L, Wong S, Wolfe K. H (2006) Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts. Nature 440: 341–345.
[28]  Scannell D. R, Frank A. C, Conant G. C, Byrne K. P, Woolfit M, et al. (2007) Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proc Natl Acad Sci U S A 104: 8397–8402.
[29]  Greig D (2009) Reproductive isolation in Saccharomyces. Heredity 102: 39–44.
[30]  Liti G, Barton D. B, Louis E. J (2006) Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174: 839–850.
[31]  Lee M. G, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–35.
[32]  Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, et al. (1985) Functional homology of mammalian and yeast RAS genes. Cell 40: 19–26.
[33]  Basson M. E, Thorsness M, Finer-Moore J, Stroud R. M, Rine J (1988) Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis. Mol Cell Biol 8: 3797–3808.
[34]  Wang A. Y, Schulze J. M, Skordalakes E, Gin J. W, Berger J. M, et al. (2009) Asf1-like structure of the conserved Yaf9 YEATS domain and role in H2A.Z deposition and acetylation. Proc Natl Acad Sci U S A 106: 21573–21578.
[35]  Kirchmaier A. L, Rine J (2006) Cell cycle requirements in assembling silent chromatin in Saccharomyces cerevisiae. Mol Cell Biol 26: 852–862.
[36]  Longtine M. S, McKenzie A 3rd, Demarini D. J, Shah N. G, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961.
[37]  Moazed D, Kistler A, Axelrod A, Rine J, Johnson A. D (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc Natl Acad Sci U S A 94: 2186–2191.
[38]  Chang J. F, Hall B. E, Tanny J. C, Moazed D, Filman D, et al. (2003) Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3. Structure 11: 637–649.
[39]  Gottschling D. E, Aparicio O. M, Billington B. L, Zakian V. A (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762.
[40]  Palladino F, Laroche T, Gilson E, Axelrod A, Pillus L, et al. (1993) SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75: 543–555.
[41]  Sperling A. S, Grunstein M (2009) Histone H3 N-terminus regulates higher order structure of yeast heterochromatin. Proc Natl Acad Sci U S A 106: 13153–13159.
[42]  Liti G, Peruffo A, James S. A, Roberts I. N, Louis E. J (2005) Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex. Yeast 22: 177–192.
[43]  Martin O. C, DeSevo C. G, Guo B. Z, Koshland D. E, Dunham M. J, et al. (2009) Telomere behavior in a hybrid yeast. Cell Res 19: 910–912.
[44]  Martino F, Kueng S, Robinson P, Tsai-Pflugfelder M, van Leeuwen F, et al. (2009) Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. Mol Cell 33: 323–334.
[45]  Fox C. A, Ehrenhofer-Murray A. E, Loo S, Rine J (1997) The origin recognition complex, SIR1, and the S phase requirement for silencing. Science 276: 1547–1551.
[46]  Triolo T, Sternglanz R (1996) Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381: 251–253.
[47]  Sussel L, Vannier D, Shore D (1993) Epigenetic switching of transcriptional states: cis- and trans-acting factors affecting establishment of silencing at the HMR locus in Saccharomyces cerevisiae. Mol Cell Biol 13: 3919–3928.
[48]  Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15: 568–573.
[49]  Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49: 169–181.
[50]  Astrom S. U, Rine J (1998) Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis. Genetics 148: 1021–1029.
[51]  Moretti P, Shore D (2001) Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Mol Cell Biol 21: 8082–8094.
[52]  Hsu H. C, Stillman B, Xu R. M (2005) Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing. Proc Natl Acad Sci U S A 102: 8519–8524.
[53]  Hou Z, Bernstein D. A, Fox C. A, Keck J. L (2005) Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. Proc Natl Acad Sci U S A 102: 8489–8494.
[54]  Gasser S. M, Hediger F, Taddei A, Neumann F. R, Gartenberg M. R (2004) The function of telomere clustering in yeast: the circe effect. Cold Spring Harb Symp Quant Biol 69: 327–337.
[55]  Bayes J. J, Malik H. S (2009) Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326: 1538–1541.
[56]  Brideau N. J, Flores H. A, Wang J, Maheshwari S, Wang X, et al. (2006) Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314: 1292–1295.
[57]  Vermaak D, Henikoff S, Malik H. S (2005) Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet 1: 96–108. doi:10.1371/journal.pgen.0010009.
[58]  Ferree P. M, Barbash D. A (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7: e1000234. doi:10.1371/journal.pbio.1000234.
[59]  Grewal S. I, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301: 798–802.
[60]  Hickman M. A, Rusche L. N (2009) The Sir2-Sum1 complex represses transcription using both promoter-specific and long-range mechanisms to regulate cell identity and sexual cycle in the yeast Kluyveromyces lactis. PLoS Genet 5: e1000710. doi:10.1371/journal.pgen.1000710.
[61]  Zill O. A, Rine J (2008) Interspecies variation reveals a conserved repressor of alpha-specific genes in Saccharomyces yeasts. Genes Dev 22: 1704–1716.
[62]  Goldstein A. L, McCusker J. H (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553.
[63]  Sikorski R. S, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
[64]  Pillus L, Rine J (1989) Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59: 637–647.
[65]  Schmitt M. E, Brown T. A, Trumpower B. L (1990) A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18: 3091–3092.
[66]  Ozaydin B, Rine J (2010) Expanded roles of the origin recognition complex in the architecture and function of silenced chromatin in Saccharomyces cerevisiae. Mol Cell Biol 30: 626–639.
[67]  Davies B. S, Wang H. S, Rine J (2005) Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory domains but different response mechanisms. Mol Cell Biol 25: 7375–7385.
[68]  Lefrancois P, Euskirchen G. M, Auerbach R. K, Rozowsky J, Gibson T, et al. (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10: 37.
[69]  Quail M. A, Kozarewa I, Smith F, Scally A, Stephens P. J, et al. (2008) A large genome center's improvements to the Illumina sequencing system. Nat Methods 5: 1005–1010.
[70]  Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18: 1851–1858.
[71]  Teytelman L, Ozaydin B, Zill O, Lefrancois P, Snyder M, et al. (2009) Impact of chromatin structures on DNA processing for genomic analyses. PLoS One 4: e6700. doi:10.1371/journal.pone.0006700.
[72]  Zhang Y, Liu T, Meyer C. A, Eeckhoute J, Johnson D. S, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137.
[73]  Altschul S. F, Gish W, Miller W, Myers E. W, Lipman D. J (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[74]  Bradley R. K, Roberts A, Smoot M, Juvekar S, Do J, et al. (2009) Fast statistical alignment. PLoS Comput Biol 5: e1000392. doi:10.1371/journal.pcbi.1000392.
[75]  Wernersson R, Pedersen A. G (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31: 3537–3539.
[76]  Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
[77]  Cliften P. F, Fulton R. S, Wilson R. K, Johnston M (2006) After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172: 863–872.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133