全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

Neighbourhood Continuity Is Not Required for Correct Testis Gene Expression in Drosophila

DOI: 10.1371/journal.pbio.1000552

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is now widely accepted that gene organisation in eukaryotic genomes is non-random and it is proposed that such organisation may be important for gene expression and genome evolution. In particular, the results of several large-scale gene expression analyses in a range of organisms from yeast to human indicate that sets of genes with similar tissue-specific or temporal expression profiles are clustered within the genome in gene expression neighbourhoods. While the existence of neighbourhoods is clearly established, the underlying reason for this facet of genome organisation is currently unclear and there is little experimental evidence that addresses the genomic requisites for neighbourhood organisation. We report the targeted disruption of three well-defined male-specific gene expression neighbourhoods in the Drosophila genome by the synthesis of precisely mapped chromosomal inversions. We compare gene expression in individuals carrying inverted chromosomes with their non-inverted but otherwise identical progenitors using whole-transcriptome microarray analysis, validating these data with specific quantitative real-time PCR assays. For each neighbourhood we generate and examine multiple inversions. We find no significant differences in the expression of genes that define each of the neighbourhoods. We further show that the inversions spatially separate both halves of a neighbourhood in the nucleus. Thus, models explaining neighbourhood organisation in terms of local sequence interactions, enhancer crosstalk, or short-range chromatin effects are unlikely to account for this facet of genome organisation. Our study challenges the notion that, at least in the case of the testis, expression neighbourhoods are a feature of eukaryotic genome organisation necessary for correct gene expression.

References

[1]  Milot E, Strouboulis J, Trimborn T, Wijgerde M, de Boer E, et al. (1996) Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87: 105–114.
[2]  Gierman H. J, Indemans M. H, Koster J, Goetze S, Seppen J, et al. (2007) Domain-wide regulation of gene expression in the human genome. Genome Res 17: 1286–1295.
[3]  Csink A. K, Bounoutas A, Griffith M. L, Sabl J. F, Sage B. T (2002) Differential gene silencing by trans-heterochromatin in Drosophila melanogaster. Genetics 160: 257–269.
[4]  Cho R. J, Campbell M. J, Winzeler E. A, Steinmetz L, Conway A, et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell 2: 65–73.
[5]  Cohen B. A, Mitra R. D, Hughes J. D, Church G. M (2000) A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat Genet 26: 183–186.
[6]  Kruglyak S, Tang H (2000) Regulation of adjacent yeast genes. Trends Genet 16: 109–111.
[7]  Birnbaum K, Shasha D. E, Wang J. Y, Jung J. W, Lambert G. M, et al. (2003) A gene expression map of the Arabidopsis root. Science 302: 1956–1960.
[8]  Williams E. J, Bowles D. J (2004) Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genome Res 14: 1060–1067.
[9]  Blumenthal T (1998) Gene clusters and polycistronic transcription in eukaryotes. Bioessays 20: 480–487.
[10]  Roy P. J, Stuart J. M, Lund J, Kim S. K (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418: 975–979.
[11]  Lercher M. J, Blumenthal T, Hurst L. D (2003) Coexpression of neighboring genes in Caenorhabditis elegans is mostly due to operons and duplicate genes. Genome Res 13: 238–243.
[12]  Chen N, Stein L. D (2006) Conservation and functional significance of gene topology in the genome of Caenorhabditis elegans. Genome Res 16: 606–617.
[13]  Boutanaev A. M, Kalmykova A. I, Shevelyov Y. Y, Nurminsky D. I (2002) Large clusters of co-expressed genes in the Drosophila genome. Nature 420: 666–669.
[14]  Spellman P. T, Rubin G. M (2002) Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1: 5.
[15]  Thygesen H. H, Zwinderman A. H (2005) Modelling the correlation between the activities of adjacent genes in Drosophila. BMC Bioinformatics 6: 10.
[16]  Mezey J. G, Nuzhdin S. V, Ye F, Jones C. D (2008) Coordinated evolution of co-expressed gene clusters in the Drosophila transcriptome. BMC Evol Biol 8: 2.
[17]  Ko M. S, Threat T. A, Wang X, Horton J. H, Cui Y, et al. (1998) Genome-wide mapping of unselected transcripts from extraembryonic tissue of 7.5-day mouse embryos reveals enrichment in the t-complex and under-representation on the X chromosome. Hum Mol Genet 7: 1967–1978.
[18]  Li Q, Lee B. T, Zhang L (2005) Genome-scale analysis of positional clustering of mouse testis-specific genes. BMC Genomics 6: 7.
[19]  Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, et al. (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291: 1289–1292.
[20]  Lercher M. J, Urrutia A. O, Hurst L. D (2002) Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet 31: 180–183.
[21]  Versteeg R, van Schaik B. D, van Batenburg M. F, Roos M, Monajemi R, et al. (2003) The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res 13: 1998–2004.
[22]  Lee J. M, Sonnhammer E. L (2003) Genomic gene clustering analysis of pathways in eukaryotes. Genome Res 13: 875–882.
[23]  Parisi M, Nuttall R, Edwards P, Minor J, Naiman D, et al. (2004) A survey of ovary-, testis-, and soma-biased gene expression in Drosophila melanogaster adults. Genome Biol 5: R40.
[24]  Parisi M, Nuttall R, Naiman D, Bouffard G, Malley J, et al. (2003) Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299: 697–700.
[25]  Zhang Y, Sturgill D, Parisi M, Kumar S, Oliver B (2007) Constraint and turnover in sex-biased gene expression in the genus Drosophila. Nature 450: 233–238.
[26]  Jin W, Riley R, Wolfinger R, White K, Passador-Gurgel G, et al. (2001) The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics 29: 389–395.
[27]  Baker D. A, Meadows L. A, Wang J, Dow J. A, Russell S (2007) Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster. BMC Genomics 8: 454.
[28]  Innocenti P, Morrow E (2010) The sexually antogonistic genes of Drosophila melanogaster. PLoS Biology 8: e1000335. doi:10.1371/journal.pbio.1000335.
[29]  Hurst L. D, Williams E. J, Pal C (2002) Natural selection promotes the conservation of linkage of co-expressed genes. Trends Genet 18: 604–606.
[30]  Ranz J. M, Maurin D, Chan Y. S, von Grotthuss M, Hillier L. W, et al. (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5: e152. doi:10.1371/journal.pbio.0050152.
[31]  Singer G. A, Lloyd A. T, Huminiecki L. B, Wolfe K. H (2005) Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. Mol Biol Evol 22: 767–775.
[32]  Semon M, Duret L (2006) Evolutionary origin and maintenance of coexpressed gene clusters in mammals. Mol Biol Evol 23: 1715–1723.
[33]  Nie H, Crooijmans R. P, Bastiaansen J. W, Megens H. J, Groenen M. A (2010) Regional regulation of transcription in the chicken genome. BMC Genomics 11: 28.
[34]  Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg M. F, et al. (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306: 655–660.
[35]  Bhutkar A, Schaeffer S. W, Russo S. M, Xu M, Smith T. F, et al. (2008) Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179: 1657–1680.
[36]  Oliver B, Parisi M, Clark D (2002) Gene expression neighborhoods. J Biol 1: 4.
[37]  Hurst L. D, Pal C, Lercher M. J (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5: 299–310.
[38]  Kosak S. T, Groudine M (2004) Gene order and dynamic domains. Science 306: 644–647.
[39]  Oliver B, Misteli T (2005) A non-random walk through the genome. Genome Biol 6: 214.
[40]  Purmann A, Toedling J, Schueler M, Carninci P, Lehrach H, et al. (2007) Genomic organization of transcriptomes in mammals: coregulation and cofunctionality. Genomics 89: 580–587.
[41]  Meiklejohn C. D, Parsch J, Ranz J. M, Hartl D. L (2003) Rapid evolution of male-biased gene expression in Drosophila. Proc Natl Acad Sci U S A 100: 9894–9899.
[42]  Chintapalli V. R, Wang J, Dow J. A (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39: 715–720.
[43]  Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, et al. (2007) The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics 177: 615–629.
[44]  Ryder E, Blows F, Ashburner M, Bautista-Llacer R, Coulson D, et al. (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167: 797–813.
[45]  Ashburner M, Golic K. C, Hawley R. S (2005) Drosophila: a laboratory handbook. New York: Cold Spring Harbor Laboratory Press.
[46]  Zeitouni B, Senatore S, Severac D, Aknin C, Semeriva M, et al. (2007) Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila. PLoS Genet 3: 1907–1921. doi:10.1371/journal.pgen.0030174.
[47]  Lee T. I, Young R. A (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34: 77–137.
[48]  van Driel R, Fransz P. F, Verschure P. J (2003) The eukaryotic genome: a system regulated at different hierarchical levels. J Cell Sci 116: 4067–4075.
[49]  Jiang Y, Bressler J, Beaudet A (2004) Epigenetics and human disease. Annu Rev Genomics Hum Genet 5: 479–510.
[50]  Babu M, Janga S, de Santiago I, Pombo A (2008) Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 18: 571–582.
[51]  Branco M, Pombo A (2007) Chromosome organization: new facts, new models. Trends Cell Biol 17: 127–134.
[52]  De S, Babu M (2010) Genomic neighbourhood and the regulation of gene expression. Curr Opin Cell Biol 22: 326–333.
[53]  Cajiao I, Zhang A, Yoo E. J, Cooke N. E, Liebhaber S. A (2004) Bystander gene activation by a locus control region. EMBO J 23: 3854–3863.
[54]  Ebisuya M, Yamamoto T, Nakajima M, Nishida E (2008) Ripples from neighbouring transcription. Nat Cell Biol 10: 1106–1113.
[55]  Kalmykova A. I, Nurminsky D. I, Ryzhov D. V, Shevelyov Y. Y (2005) Regulated chromatin domain comprising cluster of co-expressed genes in Drosophila melanogaster. Nucleic Acids Res 33: 1435–1444.
[56]  Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18: Suppl 1S96–S104.
[57]  Sproul D, Gilbert N, Bickmore W. A (2005) The role of chromatin structure in regulating the expression of clustered genes. Nat Rev Genet 6: 775–781.
[58]  Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705.
[59]  Rando O. J, Chang H. Y (2009) Genome-wide views of chromatin structure. Annu Rev Biochem 78: 245–271.
[60]  Wei G. H, Liu D. P, Liang C. C (2005) Chromatin domain boundaries: insulators and beyond. Cell Res 15: 292–300.
[61]  Negre N, Brown C. D, Shah P. K, Kheradpour P, Morrison C. A, et al. (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6: e1000814. doi:10.1371/journal.pgen.1000814.
[62]  Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447: 413–417.
[63]  Kumaran R. I, Thakar R, Spector D. L (2008) Chromatin dynamics and gene positioning. Cell 132: 929–934.
[64]  Brown J. M, Leach J, Reittie J. E, Atzberger A, Lee-Prudhoe J, et al. (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172: 177–187.
[65]  Brown J. M, Green J, das Neves R. P, Wallace H. A, Smith A. J, et al. (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182: 1083–1097.
[66]  Kuroda M, Tanabe H, Yoshida K, Oikawa K, Saito A, et al. (2004) Alteration of chromosome positioning during adipocyte differentiation. J Cell Sci 117: 5897–5903.
[67]  Pai D. A, Engelke D. R (2010) Spatial organization of genes as a component of regulated expression. Chromosoma 119: 13–25.
[68]  Osborne C. S, Chakalova L, Brown K. E, Carter D, Horton A, et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36: 1065–1071.
[69]  Osborne C. S, Chakalova L, Mitchell J. A, Horton A, Wood A. L, et al. (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5: e192. doi:10.1371/journal.pbio.0050192.
[70]  Janssen S, Cuvier O, Muller M, Laemmli U. K (2000) Specific gain- and loss-of-function phenotypes induced by satellite-specific DNA-binding drugs fed to Drosophila melanogaster. Mol Cell 6: 1013–1024.
[71]  Liu X, Wu B, Szary J, Kofoed E. M, Schaufele F (2007) Functional sequestration of transcription factor activity by repetitive DNA. J Biol Chem 282: 20868–20876.
[72]  Chen X, Hiller M, Sancak Y, Fuller M (2005) Tissue-specific TAFs counteract polycomb to turn on terminal differentiation. Science 310: 869–872.
[73]  Hiller M, Chen X, Pringle M, Suchorolski M, Sancak Y, et al. (2004) Testis-specific TAF homologs collaborate to control a tissue-specific transcription program. Development 131: 5297–5308.
[74]  White-Cooper H (2010) Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction 139: 11–21.
[75]  Hammoud S, Nix D, Zhang H, Purwar J, Carrell D, et al. (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460: 473–479.
[76]  Kolthur-Seetharam U, Martianov I, Davidson I (2008) Specialization of the general transcriptional machinery in male germ cells. Cell Cycle 7: 3493–3498.
[77]  Buhler J, Ideker T, Haynor D (2000) Dapple: improved techniques for finding spots on DNA microarrays. UW CSE Technical Report UWTR 2000-08-05:
[78]  Baldi P, Long A. D (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509–519.
[79]  Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, et al. (2007) FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biol 8: R129.
[80]  Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17: 2406–2420.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133