全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2010 

A Polarised Population of Dynamic Microtubules Mediates Homeostatic Length Control in Animal Cells

DOI: 10.1371/journal.pbio.1000542

Full-Text   Cite this paper   Add to My Lib

Abstract:

Because physical form and function are intimately linked, mechanisms that maintain cell shape and size within strict limits are likely to be important for a wide variety of biological processes. However, while intrinsic controls have been found to contribute to the relatively well-defined shape of bacteria and yeast cells, the extent to which individual cells from a multicellular animal control their plastic form remains unclear. Here, using micropatterned lines to limit cell extension to one dimension, we show that cells spread to a characteristic steady-state length that is independent of cell size, pattern width, and cortical actin. Instead, homeostatic length control on lines depends on a population of dynamic microtubules that lead during cell extension, and that are aligned along the long cell axis as the result of interactions of microtubule plus ends with the lateral cell cortex. Similarly, during the development of the zebrafish neural tube, elongated neuroepithelial cells maintain a relatively well-defined length that is independent of cell size but dependent upon oriented microtubules. A simple, quantitative model of cellular extension driven by microtubules recapitulates cell elongation on lines, the steady-state distribution of microtubules, and cell length homeostasis, and predicts the effects of microtubule inhibitors on cell length. Together this experimental and theoretical analysis suggests that microtubule dynamics impose unexpected limits on cell geometry that enable cells to regulate their length. Since cells are the building blocks and architects of tissue morphogenesis, such intrinsically defined limits may be important for development and homeostasis in multicellular organisms.

References

[1]  Wemmer K. A, Marshall W. F (2007) Flagellar length control in chlamydomonas—paradigm for organelle size regulation. Int Rev Cytol 260: 175–212.
[2]  Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14: R1014–R1027.
[3]  Castillo A, Nowak R, Littlefield K. P, Fowler V. M, Littlefield R. S (2009) A nebulin ruler does not dictate thin filament lengths. Biophys J 96: 1856–1865.
[4]  Wühr M, Chen Y, Dumont S, Groen A. C, Needleman D. J, et al. (2008) Evidence for an upper limit to mitotic spindle length. Curr Biol 18: 1256–1261.
[5]  Varga V, Leduc C, Bormuth V, Diez S, Howard J (2009) Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138: 1174–1183.
[6]  Foethke D, Makushok T, Brunner D, Nédélec F (2009) Force- and length-dependent catastrophe activities explain interphase microtubule organization in fission yeast. Mol Syst Biol 5: 241.
[7]  Martin S. G (2009) Microtubule-dependent cell morphogenesis in the fission yeast. Trends Cell Biol 19: 447–454.
[8]  Echave P, Conlon I. J, Lloyd A. C (2007) Cell size regulation in mammalian cells. Cell Cycle 6: 218–224.
[9]  Tzur A, Kafri R, LeBleu V. S, Lahav G, Kirschner M. W (2009) Cell growth and size homeostasis in proliferating animal cells. Science 325: 167–171.
[10]  Cuvelier D, Théry M, Chu Y, Dufour S, Thiéry J, et al. (2007) The universal dynamics of cell spreading. Curr Biol 17: 694–699.
[11]  Keren K, Pincus Z, Allen G. M, Barnhart E. L, Marriott G, et al. (2008) Mechanism of shape determination in motile cells. Nature 453: 475–480.
[12]  Lacayo C. I, Pincus Z, VanDuijn M. M, Wilson C. A, Fletcher D. A, et al. (2007) Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol 5: doi/10.1371/journal.pbio.0050233: e233.
[13]  Levina E. M, Kharitonova M. A, Rovensky Y. A, Vasiliev J. M (2001) Cytoskeletal control of fibroblast length: experiments with linear strips of substrate. J Cell Sci 114: 4335–4341.
[14]  Kharitonova M. A, Vasiliev J. M (2008) Controlling cell length. Semin Cell Dev Biol 19: 480–484.
[15]  Leptin M (1999) Gastrulation in Drosophila: the logic and the cellular mechanisms. EMBO J 18: 3187–3192.
[16]  Tawk M, Araya C, Lyons D. A, Reugels A. M, Girdler G. C, et al. (2007) A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature 446: 797–800.
[17]  Chen C. S, Mrksich M, Huang S, Whitesides G. M, Ingber D. E (1998) Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14: 356–363.
[18]  Dunn G. A, Heath J. P (1976) A new hypothesis of contact guidance in tissue cells. Exp Cell Res 101: 1–14.
[19]  Dunn G. A, Brown A. F (1986) Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J Cell Sci 83: 313–340.
[20]  Oakley C, Brunette D. M (1993) The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J Cell Sci 106: 343–354.
[21]  Yanagawa S, Lee J. S, Ishimoto A (1998) Identification and characterization of a novel line of Drosophila Schneider s2 cells that respond to wingless signaling. J Biol Chem 273: 32353–32359.
[22]  Ingber D. E (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116: 1157–1173.
[23]  Littlefield R. S, Fowler V. M (2008) Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler. Semin Cell Dev Biol 19: 511–519.
[24]  Gauthier N. C, Rossier O. M, Mathur A, Hone J. C, Sheetz M. P (2009) Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol Biol Cell 20: 3261–3272.
[25]  Domnina L. V, Rovensky J. A, Vasiliev J. M, Gelfand I. M (1985) Effect of microtubule-destroying drugs on the spreading and shape of cultured epithelial cells. J Cell Sci 74: 267–282.
[26]  Vasiliev J. M, Gelfand I. M, Domnina L. V, Ivanova O. Y, Komm S. G, et al. (1970) Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol 24: 625–640.
[27]  Bliokh Z. L, Domnina L. V, Ivanova O. Y, Pletjushkina O. Y, Svitkina T. M, et al. (1980) Spreading of fibroblasts in medium containing cytochalasin B: formation of lamellar cytoplasm as a combination of several functional different processes. Proc Natl Acad Sci U S A 77: 5919–5922.
[28]  Giannone G, Dubin-Thaler B. J, D?bereiner H, Kieffer N, Bresnick A. R, et al. (2004) Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116: 431–443.
[29]  Baum B, Cherbas L (2008) Drosophila cell lines as model systems and as an experimental tool. Methods Mol Biol 420: 391–424.
[30]  Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33: 891–895.
[31]  Kunda P, Craig G, Dominguez V, Baum B (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 13: 1867–1875.
[32]  Gao Y, Dickerson J. B, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 101: 7618.
[33]  Straight A. F, Cheung A, Limouze J, Chen I, Westwood N. J, et al. (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299: 1743–1747.
[34]  D?bereiner H, Dubin-Thaler B. J, Giannone G, Sheetz M. P (2005) Force sensing and generation in cell phases: analyses of complex functions. J Appl Physiol 98: 1542–1546.
[35]  Kharitonova M. A, Vasiliev J. M (2004) Length control is determined by the pattern of cytoskeleton. J Cell Sci 117: 1955–1960.
[36]  Winckler B, Solomon F (1991) A role for microtubule bundles in the morphogenesis of chicken erythrocytes. Proc Natl Acad Sci U S A 88: 6033–6037.
[37]  Kiger A. A, Baum B, Jones S, Jones M. R, Coulson A, et al. (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2: 27.
[38]  Vandecandelaere A, Martin S. R, Engelborghs Y (1997) Response of microtubules to the addition of colchicine and tubulin-colchicine: evaluation of models for the interaction of drugs with microtubules. Biochem J 323: 189–196.
[39]  Waterman-Storer C. M, Salmon E. D (1997) Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139: 417–434.
[40]  Dixit R, Cyr R (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16: 3274–3284.
[41]  Chamaraux F, Ali O, Keller S, Bruckert F, Fourcade B (2008) Physical model for membrane protrusions during spreading. Phys Biol 5: 36009.
[42]  Dubin-Thaler B. J, Giannone G, D?bereiner H, Sheetz M. P (2004) Nanometer analysis of cell spreading on matrix-coated surfaces reveals two distinct cell states and steps. Biophys J 86: 1794–1806.
[43]  Komarova Y. A, Vorobjev I. A, Borisy G. G (2002) Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci 115: 3527–3539.
[44]  Busch K. E, Brunner D (2004) The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr Biol 14: 548–559.
[45]  Buck K. B, Zheng J. Q (2002) Growth cone turning induced by direct local modification of microtubule dynamics. J Neurosci 22: 9358–9367.
[46]  Gordon-Weeks P. R (2004) Microtubules and growth cone function. J Neurobiol 58: 70–83.
[47]  Wittmann T, Bokoch G. M, Waterman-Storer C. M (2003) Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J Cell Biol 161: 845–851.
[48]  Tomasek J. J, Hay E. D (1984) Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J Cell Biol 99: 536–549.
[49]  Clarke J (2009) Live imaging of development in fish embryos. Semin Cell Dev Biol 20: 942–946.
[50]  Zhang L, Kendrick C, Jülich D, Holley S. A (2008) Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function. Development 135: 2065–2070.
[51]  Rhodes J, Amsterdam A, Sanda T, Moreau L. A, McKenna K, et al. (2009) Emi1 maintains genomic integrity during zebrafish embryogenesis and cooperates with p53 in tumor suppression. Mol Cell Biol 29: 5911–5922.
[52]  Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, et al. (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23: 247–256.
[53]  Hu S, Chen J, Wang N (2004) Cell spreading controls balance of prestress by microtubules and extracellular matrix. Front Biosci 9: 2177–2182.
[54]  Mata J, Nurse P (1997) Tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89: 939–949.
[55]  Williamson R. E (1991) Orientation of cortical microtubules in interphase plant cells. In: Jeon K. W, Friedlander M, editors. pp. 135–206. International review of cytology, Volume 129.
[56]  Goshima G, Wollman R, Stuurman N, Scholey J. M, Vale R. D (2005) Length control of the metaphase spindle. Curr Biol 15: 1979–1988.
[57]  Ciruna B, Jenny A, Lee D, Mlodzik M, Schier A. F (2006) Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439: 220–224.
[58]  Lecuit T, Lenne P. F (2007) Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 8: 633–644.
[59]  Harris W. A, Hartenstein V (1991) Neuronal determination without cell division in Xenopus embryos. Neuron 6: 499–515.
[60]  Hartenstein V, Posakony J. W (1990) Sensillum development in the absence of cell division: the sensillum phenotype of the Drosophila mutant string. Dev Biol 138: 147–158.
[61]  Pope K. L, Harris T. J. C (2008) Control of cell flattening and junctional remodeling during squamous epithelial morphogenesis in Drosophila. Development 135: 2227–2238.
[62]  Jankovics F, Brunner D (2006) Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster. Dev Cell 11: 375–385.
[63]  Halpain S, Dehmelt L (2006) The MAP1 family of microtubule-associated proteins. Genome Biol 7: 224.
[64]  Zhang T, Zaal K. J. M, Sheridan J, Mehta A, Gundersen G. G, et al. (2009) Microtubule plus-end binding protein EB1 is necessary for muscle cell differentiation, elongation and fusion. J Cell Sci 122: 1401–1409.
[65]  Straube A, Merdes A (2007) Eb3 regulates microtubule dynamics at the cell cortex and is required for myoblast elongation and fusion. Curr Biol 17: 1318–1325.
[66]  Whitesides G. M, Ostuni E, Takayama S, Jiang X, Ingber D. E (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3: 335–373.
[67]  Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27: 353–365.
[68]  Rogers S. L, Rogers G. C (2008) Culture of Drosophila S2 cells and their use for RNAi-mediated loss-of-function studies and immunofluorescence microscopy. Nat Protoc 3: 606–611.
[69]  Riedl J, Crevenna A. H, Kessenbrock K, Yu J. H, Neukirchen D, et al. (2008) Lifeact: a versatile marker to visualise F-actin. Nat Methods 5: 605–607.
[70]  Dogterom M, Yurke B (2008) Measurement of the force-velocity relation for growing microtubules. Science 278: 856–860.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133