全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2007 

Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control

DOI: 10.1371/journal.pbio.0050042

Full-Text   Cite this paper   Add to My Lib

Abstract:

The prospects for the success of malaria control depend, in part, on the basic reproductive number for malaria, R0. Here, we estimate R0 in a novel way for 121 African populations, and thereby increase the number of R0 estimates for malaria by an order of magnitude. The estimates range from around one to more than 3,000. We also consider malaria transmission and control in finite human populations, of size H. We show that classic formulas approximate the expected number of mosquitoes that could trace infection back to one mosquito after one parasite generation, Z0(H), but they overestimate the expected number of infected humans per infected human, R0(H). Heterogeneous biting increases R0 and, as we show, Z0(H), but we also show that it sometimes reduces R0(H); those who are bitten most both infect many vectors and absorb infectious bites. The large range of R0 estimates strongly supports the long-held notion that malaria control presents variable challenges across its transmission spectrum. In populations where R0 is highest, malaria control will require multiple, integrated methods that target those who are bitten most. Therefore, strategic planning for malaria control should consider R0, the spatial scale of transmission, human population density, and heterogeneous biting.

References

[1]  Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of malaria. Nature 434: 214–217.
[2]  Snow RW, Omumbo JA (2006) Malaria. In: Jamison DT, Feachem RG, Makgoba MW, Bos ER, Baingana FK, et al., editors. Disease and mortality in sub-Saharan Africa, 2nd edition. Washington (D. C.): World Bank. pp. 195–231.
[3]  Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW (2005) Urbanization, malaria transmission, and disease burden in Africa. Nat Rev Microbiol 3: 81–90.
[4]  Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero JO, et al. (1997) Relation between severe malaria morbidity in children and level of transmission in Africa. Lancet 349: 1650–1654.
[5]  Marsh K, Snow RW (1999) Malaria transmission and morbidity. Parassitologia 41: 241–246.
[6]  Snow RW, Marsh K (2002) The consequences of reducing transmission of in Africa. Adv Parasitol 52: 235–264.
[7]  Struik SS, Riley EM (2004) Does malaria suffer from lack of memory? Immunol Rev 201: 268–290.
[8]  Reyburn H, Mbatia R, Drakeley C, Bruce J, Carneiro I, et al. (2005) Association of transmission intensity and age with clinical manifestations and case fatality of severe malaria. JAMA 293: 1461–1470.
[9]  Anderson RM, May RM (1991) Infectious diseases of humans. Oxford: Oxford University Press. 757 p.
[10]  Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 2: 23–41.
[11]  Ross R (1910) The prevention of malaria. London: John Murray. 669 p.
[12]  Macdonald G (1957) The epidemiology and control of malaria. Oxford: Oxford University Press. 201 p.
[13]  Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, et al. (1997) Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc Natl Acad Sci U S A 94: 338–342.
[14]  Smith DL, Dushoff J, Snow RW, Hay SI (2005) The entomological inoculation rate and its relation to the prevalence of infection in African children. Nature 438: 492–495.
[15]  Dietz K (1980) Models for vector-borne parasitic diseases. Lect Notes Biomath 39: 264–277.
[16]  Dye C, Hasibeder G (1986) Population dynamics of mosquito-borne disease: Effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg 80: 69–77.
[17]  Smith DL, Dushoff J, McKenzie FE (2004) The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2: e368.. doi:10.1371/journal.pbio.0020368.
[18]  Le Menach A, McKenzie FE, Flahault A, Smith DL (2005) The unexpected importance of mosquito oviposition behaviour for malaria: Non-productive larval habitats can be sources for malaria transmission. Malar J 4: 23.
[19]  Davidson G, Draper CC (1953) Field studies on some of the basic factors concerned in the transmission of malaria. Trans R Soc Trop Med Hyg 47: 522–535.
[20]  Davidson G (1955) Further studies of the basic factors concerned in the transmission of malaria. Trans R Soc Trop Med Hyg 49: 339–350.
[21]  Macdonald G (1956) Theory of the eradication of malaria. Bull World Health Organ 15: 369–387.
[22]  Freeman J, Laserson KF, Petralanda I, Spielman A (1999) Effect of chemotherapy on malaria transmission among Yanomami Amerindians: Simulated consequences of placebo treatment. Am J Trop Med Hyg 60: 774–780.
[23]  Macdonald G, Cuellar CB, Foll CV (1968) The dynamics of malaria. Bull World Health Organ 38: 743–755.
[24]  Garrett-Jones C (1964) Prognosis for interruption of malaria transmission through assessment of the mosquito's vectorial capacity. Nature 204: 1173–1175.
[25]  Davidson G (1954) Estimation of the survival of Anopheline mosquitoes in nature. Nature 174: 792–793.
[26]  Dye C (1986) Vectorial capacity: Must we measure all its components. Parasitol Today 2: 203–209.
[27]  Smith DL, McKenzie FE (2004) Statics and dynamics of malaria infection in anopheles mosquitoes. Malar J 3: 13.
[28]  Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, et al. (2000) A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62: 535–544.
[29]  Githeko AK, Brandling-Bennett AD, Beier M, Atieli F, Owaga M, et al. (1992) The reservoir of malaria in a holoendemic area of western Kenya. Trans R Soc Trop Med Hyg 86: 355–358.
[30]  Burkot TR, Graves PM, Paru R, Wirtz RA, Heywood PF (1988) Human malaria transmission studies in the complex in Papua New Guinea: Sporozoite rates, inoculation rates, and sporozoite densities. Am J Trop Med Hyg 39: 135–144.
[31]  Gupta S, Trenholme K, Anderson RM, Day KP (1994) Antigenic diversity and the transmission dynamics of . Science 263: 961–963.
[32]  Muirhead-Thomson RC (1954) Factors determining the true reservoir of infection of and in a West African village. Trans R Soc Trop Med Hyg 48: 208–209.
[33]  Molineaux L, Gramiccia G (1980) The Garki project: Research on the epidemiology and control of malaria in the Sudan savanna of West Africa. Geneva: World Health Organization. 311 p.
[34]  Greenwood B (1989) The microepidemiology of malaria and its importance to malaria control. Trans R Soc Trop Med Hyg 83: S25–S29.
[35]  Hay SI, Snow RW (2006) The Malaria Atlas Project (MAP): Developing global maps of malaria risk. PLoS Med 3: e347.. doi:10.1371/journal.pmed.0030473.
[36]  Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson PJ (2003) Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol 33: 909–917.
[37]  Mukabana WR, Takken W, Coe R, Knols BG (2002) Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector . Malar J 1: 17.
[38]  Knols BG (1996) On human odour, malaria mosquitoes, and limburger cheese. Lancet 348: 1322.
[39]  Murphy MW, Dunton RF, Perich MJ, Rowley WA (2001) Attraction of Anopheles (Diptera: culicidae) to volatile chemicals in Western Kenya. J Med Entomol 38: 242–244.
[40]  Takken W, Knols BGJ (1999) Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44: 131–157.
[41]  Srinivas G, Edwin Amalraj R, Dhanraj B (2005) The use of personal protection measures against malaria in an urban population. Public Health 119: 415–417.
[42]  Lindsay SW, Snow RW (1988) The trouble with eaves; house entry by vectors of malaria. Trans R Soc Trop Med Hyg 82: 645–646.
[43]  Ansell J, Hamilton KA, Pinder M, Walraven GE, Lindsay SW (2002) Short-range attractiveness of pregnant women to mosquitoes. Trans R Soc Trop Med Hyg 96: 113–116.
[44]  Shirai O, Tsuda T, Kitagawa S, Naitoh K, Seki T, et al. (2002) Alcohol ingestion stimulates mosquito attraction. J Am Mosq Control Assoc 18: 91–96.
[45]  Port GR, Boreham PFL, Bryan JH (1980) The relationship of host size to feeding by mosquitoes of the giles complex (Diptera: Culicidae). Bull Entomol Res 70: 133–144.
[46]  Kelly DW (2001) Why are some people bitten more than others? Trends Parasitol 17: 578–581.
[47]  Sutherland CJ, Ord R, Dunyo S, Jawara M, Drakeley CJ, et al. (2005) Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether. PLoS Med 2: e92.. doi:10.1371/journal.pmed.0020092.
[48]  Nosten F, van Vugt M, Price R, Luxemburger C, Thway KL, et al. (2000) Effects of artesunate-mefloquine combination on incidence of malaria and mefloquine resistance in western Thailand: A prospective study. Lancet 356: 297–302.
[49]  Barnes KI, Durrheim DN, Little F, Jackson A, Mehta U, et al. (2005) Effect of artemether-lumefantrine policy and improved vector control on malaria burden in KwaZulu–Natal, South Africa. PLoS Med 2: e330.. doi:10.1371/journal.pmed.0020330.
[50]  Conteh L, Sharp BL, Streat E, Barreto A, Konar S (2004) The cost and cost-effectiveness of malaria vector control by residual insecticide house-spraying in southern Mozambique: A rural and urban analysis. Trop Med Int Health 9: 125–132.
[51]  Killeen GF, Knols BG, Gu W (2003) Taking malaria transmission out of the bottle: Implications of mosquito dispersal for vector-control interventions. Lancet Infect Dis 3: 297–303.
[52]  Aron JL, May RM (1982) The population dynamics of malaria. In: Anderson RM, editor. Population dynamics and infectious disease. London: Chapman and Hall. pp. 139–179.
[53]  Walton GA (1947) On the control of malaria in Freetown, Sierra Leone. I. and in relation to malaria occurring in infants. Ann Trop Med Parasitol 41: 380–407.
[54]  Dietz K, Molineaux L, Thomas A (1974) A malaria model tested in the African savannah. Bull World Health Organ 50: 347–357.
[55]  Bailey NTJ (1982) The biomathematics of malaria. Oxford: Oxford University Press. 210 p.
[56]  Dietz K (1988) Density dependence in parasite transmission dynamics. Parasitol Today 4: 91–97.
[57]  Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133