全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2006 

Viruses' Life History: Towards a Mechanistic Basis of a Trade-Off between Survival and Reproduction among Phages

DOI: 10.1371/journal.pbio.0040193

Full-Text   Cite this paper   Add to My Lib

Abstract:

Life history theory accounts for variations in many traits involved in the reproduction and survival of living organisms, by determining the constraints leading to trade-offs among these different traits. The main life history traits of phages—viruses that infect bacteria—are the multiplication rate in the host, the survivorship of virions in the external environment, and their mode of transmission. By comparing life history traits of 16 phages infecting the bacteria Escherichia coli, we show that their mortality rate is constant with time and negatively correlated to their multiplication rate in the bacterial host. Even though these viruses do not age, this result is in line with the trade-off between survival and reproduction previously observed in numerous aging organisms. Furthermore, a multiple regression shows that the combined effects of two physical parameters, namely, the capsid thickness and the density of the packaged genome, account for 82% of the variation in the mortality rate. The correlations between life history traits and physical characteristics of virions may provide a mechanistic explanation of this trade-off. The fact that this trade-off is present in this very simple biological situation suggests that it might be a fundamental property of evolving entities produced under constraints. Moreover, such a positive correlation between mortality and multiplication reveals an underexplored trade-off in host–parasite interactions.

References

[1]  Charnov EL (1997) Trade-off-invariant rules for evolutionarily stable life histories. Nature 387: 393–394.
[2]  Taylor P (1991) Optimal life histories with age dependent tradeoff curves. J Theor Biol 148: 33–48.
[3]  Holliday R (1995) Understanding ageing. Cambridge: Cambridge University Press. 207 p.
[4]  Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci 205: 531–546.
[5]  Kirkwood TB (2005) Understanding the odd science of aging. Cell 120: 437–447.
[6]  Frank SA (1996) Models of parasite virulence. Q Rev Biol 71: 37–78.
[7]  Bonhoeffer S, Lenski RE, Ebert D (1996) The curse of the pharaoh: The evolution of virulence in pathogens with long living propagules. Proc Biol Sci 263: 715–721.
[8]  Skraber S, Gassilloud B, Gantzer C (2004) Comparison of coliforms and coliphages as tools for assessment of viral contamination in river water. Appl Environ Microbiol 70: 3644–3649.
[9]  Araujo RM, Puig A, Lasobras J, Lucena F, Jofre J (1997) Phages of enteric bacteria in fresh water with different levels of faecal pollution. J Appl Microbiol 82: 281–286.
[10]  Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM (2001) DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci U S A 98: 13671–13674.
[11]  Evilevitch A, Castelnovo M, Knobler CM, Gelbart WM (2004) Measuring the force ejecting DNA from phage. J Phys Chem B 108: 6838–6843.
[12]  Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, et al. (2001) The bacteriophage straight phi29 portal motor can package DNA against a large internal force. Nature 413: 748–752.
[13]  Ritchie DA, Malcolm FE (1970) Heat-stable and density mutants of phages T1, T3 and T7. J Gen Virol 9: 35–43.
[14]  Parkinson JS, Huskey RJ (1971) Deletion mutants of bacteriophage lambda. I. Isolation and initial characterization. J Mol Biol 56: 369–384.
[15]  Yamagishi H, Eguchi G, Matsuo H, Ozeki H (1973) Visualization of thermal inactivation in phages lambda and phi80. Virology 53: 277–282.
[16]  Rubenstein I (1968) Heat-stable mutants of T5 phage. I. The physical properties of the phage and their DNA molecules. Virology 36: 356–376.
[17]  Russell PW, Muller UR (1984) Construction of bacteriophage luminal diameterX174 mutants with maximum genome sizes. J Virol 52: 822–827.
[18]  Schaper M, Duran AE, Jofre J (2002) Comparative resistance of phage isolates of four genotypes of f-specific RNA bacteriophages to various inactivation processes. Appl Environ Microbiol 68: 3702–3707.
[19]  Adams MH (1959) Bacteriophages. New York: Interscience publishers. 592 p.
[20]  Caldendar R, editor. (1988) The bacteriophages. New York: Plenum Press. 760 p.
[21]  Ackermann HW (2003) Bacteriophage observations and evolution. Res Microbiol 154: 245–251.
[22]  Droesbeke JJ, Fichet B, Tassi P, editors. (1989) Analyse statistique des durées de vie: Modélisation des données censurées. Paris: Economica. 282 p.
[23]  Purohit PK, Inamdar MM, Grayson PD, Squires TM, Kondev J, et al. (2005) Forces during bacteriophage DNA packaging and ejection. Biophys J 88: 851–866.
[24]  Chiu W, Burnett R, Garcia R (1997) Structural biology of viruses. New York: Oxford University Press. 484 p.
[25]  Purohit PK, Kondev J, Phillips R (2003) Mechanics of DNA packaging in viruses. Proc Natl Acad Sci U S A 100: 3173–3178.
[26]  Loeb T, Zinder ND (1961) A bacteriophage containing RNA. Proc Nat Acad Sci USA 47: 282–289.
[27]  Bamford DH, Rouhiainen L, Takkinen K, Soderlund H (1981) Comparison of the lipid-containing bacteriophages PRD1, PR3, PR4, PR5 and L17. J Gen Virol 57: 365–373.
[28]  Moce-Llivina L, Muniesa M, Pimenta-Vale H, Lucena F, Jofre J (2003) Survival of bacterial indicator species and bacteriophages after thermal treatment of sludge and sewage. Appl Environ Microbiol 69: 1452–1456.
[29]  Brion GM, O'Banion NB, Marchin GL (2004) Comparison of bacteriophages for use in iodine inactivation: batch and continuous flow studies. J Water Health 2: 261–266.
[30]  Sinton LW, Finlay RK, Lynch PA (1999) Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl Environ Microbiol 65: 3605–3613.
[31]  Ebert D, Bull JJ (2003) Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends Microbiol 11: 15–20.
[32]  Woody MA, Cliver DO (1995) Effects of temperature and host cell growth phase on replication of F-specific RNA coliphage Q beta. Appl Environ Microbiol 61: 1520–1526.
[33]  Havelaar AH, Pot-Hogeboom WM, Furuse K, Pot R, Hormann MP (1990) F-specific RNA bacteriophages and sensitive host strains in faeces and wastewater of human and animal origin. J Appl Bacteriol 69: 30–37.
[34]  Leroi AM (2001) Molecular signals versus the Loi de Balancement. Trends Ecol Evol 16: 24–29.
[35]  Bull JJ, Pfennig D, Wang I (2004) Genetic details, optimization and phage life histories. Trends Ecol Evol 19: 76–82.
[36]  Bull JJ, Badgett MR, Springman R, Molineux IJ (2004) Genome properties and the limits of adaptation in bacteriophages. Evolution Int J Org Evolution 58: 692–701.
[37]  Campbell AM (1996) Bacteriophages. In: Neidhardt FC, editor. Escherichia coli and salmonella: Cellular and molecular biology. 2nd edition. Washington DC: ASM Press. pp. 2325–2338.
[38]  Georgopolos C, Tilly K, Casjens S (1983) Lambdoid phage head assembly. In: Hendrix RW, editor. Lambda II. Cold Spring Harbor (New York): Cold Spring Harbor Laboratory Press. pp. 279–304.
[39]  Makowski L, Russel MChiu W, Burnett RM, Garcea RL (1997) Structure and assembly of filamentous bacteriophages. Structural biology of viruses. New York: Oxford University Press. pp. 352–380.
[40]  Boedtker H, Gesteland R (1975) Physical properties of RNA bacteriophages. In: Zinder ND, editor. RNA phages. Cold Spring Harbor (New York): Cold Spring Harbor Laboratory Press. pp. 1–28.
[41]  Van Duin J (1988) Single-stranded RNA bacteriophages. In: Calendar R, editor. The bacteriophages. New York: Plenum Press. pp. 117–167.
[42]  Harshey R (1988) Phage Mu. In: Calendar R, editor. The bacteriophages. New York: Plenum Press. pp. 193–234.
[43]  Giphart-Gassler M, Wijffelman C, Reeve J (1981) Structural polypeptides and products of late genes of bacteriophage Mu: Characterization and functional aspects. J Mol Biol 145: 139–163.
[44]  Yarmolinsky M, Sternberg N (1988) Bacteriophage P1. In: Calendar R, editor. The bacteriophages. New York: Plenum Press. pp. 291–438.
[45]  Dokland T, Lindqvist BH, Fuller SD (1992) Image reconstruction from cryo-electron micrographs reveals the morphopoietic mechanism in the P2-P4 bacteriophage system. EMBO J 11: 839–846.
[46]  Bertani LE, Six EW (1988) The P2-like phages and their parasite, P4. In: Calendar R, editor. The bacteriophages. New York: Plenum Press. pp. 77–143.
[47]  McKenna R, Xia D, Willingmann P, Ilag LL, Krishnaswamy S, et al. (1992) Atomic structure of single-stranded DNA bacteriophage phi X174 and its functional implications. Nature 355: 137–143.
[48]  Dokland T, Bernal RA, Burch A, Pletnev S, Fane BA, et al. (1999) The role of scaffolding proteins in the assembly of the small, single-stranded DNA virus phiX174. J Mol Biol 288: 595–608.
[49]  Mindich L, Bamford D (1988) Lipid-containing bacteriophages. In: Calendar R, editor. The bacteriophages. New York: Plenum Press. pp. 475–520.
[50]  Black L, Showe M, Steven A (1994) Morphogenesis of the T4 head. In: Karam J, editor. Molecular biology of bacteriophage T4. Washington DC: American Society for Microbiology Press. pp. 218–258.
[51]  Pajunen MI, Elizondo MR, Skurnik M, Kieleczawa J, Molineux IJ (2002) Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J Mol Biol 319: 1115–1132.
[52]  Cerritelli ME, Cheng N, Rosenberg AH, McPherson CE, Booy FP, et al. (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91: 271–280.
[53]  McCorquodale DJ, Warner H (1988) Bacteriophage T5 and related phages. In: Calendar R, editor. The bacteriophages. New York: Plenum Press. pp. 439–475.
[54]  Cerritelli ME, Studier FW (1996) Assembly of T7 capsids from independently expressed and purified head protein and scaffolding protein. J Mol Biol 258: 286–298.
[55]  Zinder ND, editor. (1975) RNA phages. Cold Spring Harbor (New York): Cold Spring Harbor Laboratory Press. 428 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133