The 26S proteasome contains a 19S regulatory particle that selects and unfolds ubiquitinated substrates for degradation in the 20S catalytic particle. To date there are no high-resolution structures of the 19S assembly, nor of the lid or base subcomplexes that constitute the 19S. Mass spectra of the intact lid complex from Saccharomyces cerevisiae show that eight of the nine subunits are present stoichiometrically and that a stable tetrameric subcomplex forms in solution. Application of tandem mass spectrometry to the intact lid complex reveals the subunit architecture, while the coupling of a cross-linking approach identifies further interaction partners. Taking together our results with previous analyses we are able to construct a comprehensive interaction map. In summary, our findings allow us to identify a scaffold for the assembly of the particle and to propose a regulatory mechanism that prevents exposure of the active site until assembly is complete. More generally, the results highlight the potential of mass spectrometry to add crucial insight into the structural organization of an endogenous, wild-type complex.
References
[1]
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425–479.
[2]
Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015–1068.
[3]
Walz J, Erdmann A, Kania M, Typke D, Koster AJ, et al. (1998) 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121: 19–29.
[4]
Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: Paradigm of a self-compartmentalizing protease. Cell 92: 367–380.
[5]
Verma R, Aravind L, Oania R, McDonald WH, Yates JR, et al. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298: 611–615.
[6]
Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419: 403–407.
[7]
Guterman A, Glickman MH (2004) Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 279: 1729–1738.
[8]
Verma R, Chen S, Feldman R, Schieltz D, Yates J, et al. (2000) Proteasomal proteomics: Identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11: 3425–3439.
[9]
Sone T, Saeki Y, Toh-e A, Yokosawa H (2004) Sem1p is a novel subunit of the 26 S proteasome from . J Biol Chem 279: 28807–28816.
[10]
Glickman MH, Rubin DM, Fried VA, Finley D (1998) The regulatory particle of the proteasome. Mol Cell Biol 18: 3149–3162.
[11]
Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94: 615–623.
[12]
Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, et al. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1: 221–226.
[13]
Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17: 4909–4919.
[14]
Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7: 742–749.
[15]
Cope GA, Deshaies RJ (2003) COP9 signalosome: A multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114: 663–671.
[16]
Schwechheimer C (2004) The COP9 signalosome (CSN): An evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta 1695: 45–54.
[17]
Wei N, Deng XW (2003) The COP9 signalosome. Annu Rev Cell Dev Biol 19: 261–286.
[18]
Ambroggio XI, Rees DC, Deshaies RJ (2004) JAMM: A metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol 2: e2. doi: 10.1371/journal.pbio.0020002.
[19]
Tran HJ, Allen MD, Lowe J, Bycroft M (2003) Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 42: 11460–11465.
[20]
Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J 20: 7096–7107.
[21]
Ferrell K, Wilkinson CR, Dubiel W, Gordon C (2000) Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 25: 83–88.
[22]
Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, et al. (2000) A comprehensive analysis of protein-protein interactions in . Nature 403: 623–627.
[23]
Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98: 4569–4574.
[24]
Hartmann-Petersen R, Tanaka K, Hendil KB (2001) Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch Biochem Biophys 386: 89–94.
[25]
Isono E, Saeki Y, Yokosawa H, Toh-e A (2004) Rpn7 Is required for the structural integrity of the 26 S proteasome of . J Biol Chem 279: 27168–27176.
[26]
Isono E, Saito N, Kamata N, Saeki Y, Toh EA (2005) Functional analysis of Rpn6p, a lid component of the 26 S proteasome, using temperature-sensitive rpn6 mutants of the yeast . J Biol Chem 280: 6537–6547.
[27]
Loo JA, Berhane B, Kaddis CS, Wooding KM, Xie Y, et al. (2005) Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. J Am Soc Mass Spectrom 16: 998–1008.
[28]
McCammon MG, Hernandez H, Sobott F, Robinson CV (2004) Tandem mass spectrometry defines the stoichiometry and quaternary structural arrangement of tryptophan molecules in the multiprotein complex TRAP. J Am Chem Soc 126: 5950–5951.
[29]
Rostom AA, Robinson CV (1999) Detection of the intact GroEL chaperonin assembly by mass spectrometry. J Am Chem Soc 121: 4718–4719.
[30]
Ilag LL, Westblade LF, Deshayes C, Kolb A, Busby SJ, et al. (2004) Mass spectrometry of RNA polymerase: Interactions of the core enzyme with sigma70 and Rsd protein. Structure (Camb) 12: 269–275.
[31]
Ilag LL, Videler H, McKay AR, Sobott F, Fucini P, et al. (2005) Heptameric (L12)6/L10 rather than canonical pentameric complexes are found by tandem MS of intact ribosomes from thermophilic bacteria. Proc Natl Acad Sci U S A 102: 8192–8197.
[32]
Hanson CL, Fucini P, Ilag LL, Nierhaus KH, Robinson CV (2003) Dissociation of intact ribosomes in a mass spectrometer. Evidence for conformational change in a ribosome elongation factor G complex. J Biol Chem 278: 1259–1267.
[33]
Hernández H, Dziembowsk A, Taverner T, Séraphin B, Robinson CV (2006) Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep 7: 605–610.
[34]
Sharon M, Witt S, Felderer K, Rockel B, Baumeister W, et al. (2006) 20S proteasomes have the potential to keep substrates in store for continual degradation. J Biol Chem 281: 9569–9575.
[35]
Sobott F, McCammon MG, Robinson CV (2003) Gas-phase dissociation pathways of a tetrameric protein complex. Int J Mass Spectro 230: 193–200.
[36]
Jurchen JC, Williams ER (2003) Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J Am Chem Soc 125: 2817–2826.
[37]
Smith RD, Lightwahl KJ, Winger BE, Loo JA (1992) Preservation of noncovalent associations in electrospray ionization mass-spectrometry-multiply charged polypeptide and protein dimers. Org Mass Spectrom 27: 811–821.
[38]
Versluis C, van der Staaij A, Stokvis E, Heck AJ, de Craene B (2001) Metastable ion formation and disparate charge separation in the gas-phase dissection of protein assemblies studied by orthogonal time-of-flight mass spectrometry. J Am Soc Mass Spectrom 12: 329–336.
[39]
Benesch JL, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: Preservation and dissociation. Curr Opin Struct Biol 16: 245–251.
[40]
Loo JA (1997) Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom Rev 16: 1–23.
[41]
Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT, et al. (1996) Probing the nature of noncovalent interactions by mass spectrometry. A study of protein-CoA ligand binding and assembly. J Am Chem Soc 118: 8646–8653.
[42]
Chernushevich IV, Thomson BA (2004) Collisional cooling of large ions in electrospray mass spectrometry. Anal Chem 76: 1754–1760.
[43]
Fandrich M, Tito MA, Leroux MR, Rostom AA, Hartl FU, et al. (2000) Observation of the noncovalent assembly and disassembly pathways of the chaperone complex MtGimC by mass spectrometry. Proc Natl Acad Sci U S A 97: 14151–14155.
[44]
Rappsilber J, Siniossoglou S, Hurt EC, Mann M (2000) A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal Chem 72: 267–275.
[45]
Benesch JLP, Aquilina JA, Ruotolo BT, Sobott F, Robinson CV (2006) Tandem mass spectrometry reveals the quaternary organization of macromolecular assemblies. Chem Biol 13: 597–605.
[46]
Davy A, Bello P, Thierry-Mieg N, Vaglio P, Hitti J, et al. (2001) A protein-protein interaction map of the 26S proteasome. EMBO Rep 2: 821–828.
[47]
Yen HC, Gordon C, Chang EC (2003) Int6 and Ras homologs regulate cell division and mitotic fidelity via the proteasome. Cell 112: 207–217.
[48]
Kapelari B, Bech-Otschir D, Hegerl R, Schade R, Dumdey R, et al. (2000) Electron microscopy and subunit-subunit interaction studies reveal a first architecture of COP9 signalosome. J Mol Biol 300: 1169–1178.
[49]
Scheel H, Hofmann K (2005) Prediction of a common structural scaffold for proteasome lid, COP9-signalosome and eIF3 complexes. BMC Bioinformatics 6: 71.
[50]
Seol JH, Shevchenko A, Deshaies RJ (2001) Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3: 384–391.
[51]
Sobott F, Hernandez H, McCammon MG, Tito MA, Robinson CV (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74: 1402–1407.
[52]
Nettleton EJ, Sunde M, Lai Z, Kelly JW, Dobson CM, et al. (1998) Protein subunit interactions and structural integrity of amyloidogenic transthyretins: Evidence from electrospray mass spectrometry. J Mol Biol 281: 553–564.
[53]
Tito MA, Tars K, Valegard K, Hajdu J, Robinson CV (2000) Electrospray time-of-flight mass spectrometry of the intact MS2 virus capsid. J Am Chem Soc 122: 3550–3551.
[54]
Kimura Y, Saeki Y, Yokosawa H, Polevoda B, Sherman F, et al. (2003) N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Arch Biochem Biophys 409: 341–348.
[55]
Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203: 173–179.
[56]
Wendler P, Lehmann A, Janek K, Baumgart S, Enenkel C (2004) The bipartite nuclear localization sequence of Rpn2 is required for nuclear import of proteasomal base complexes via karyopherin alphabeta and proteasome functions. J Biol Chem 279: 37751–37762.