全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2006 

Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

DOI: 10.1371/journal.pbio.0040286

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance.

References

[1]  Collins K, Gorovsky MA (2005) . Curr Biol 15: R317–R318.
[2]  Nanney DL, Simon EM (2000) Laboratory and evolutionary history of . Methods Cell Biol 62: 3–25.
[3]  Zaug AJ, Cech TR (1986) The intervening sequence RNA of Tetrahymena is an enzyme. Science 231: 470–475.
[4]  Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120: 33–53.
[5]  Yao MC, Yao CH (1981) Repeated hexanucleotide C-C-C-C-A-A is present near free ends of macronuclear DNA of Tetrahymena. Proc Natl Acad Sci U S A 78: 7436–7439.
[6]  Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413.
[7]  Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, et al. (1996) Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.
[8]  Asai DJ, Forney JD, editors. (2000) . San Diego: Academic Press. 580 p.
[9]  Turkewitz AP, Orias E, Kapler G (2002) Functional genomics: The coming of age for . Trends Genet 18: 35–40.
[10]  Kim K, Weiss LM (2004) : The model apicomplexan. Int J Parasitol 34: 423–432.
[11]  Donald RG, Roos DS (1998) Gene knock-outs and allelic replacements in : HXGPRT as a selectable marker for hit-and-run mutagenesis. Mol Biochem Parasitol 91: 295–305.
[12]  Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, et al. (2005) The transcriptome of . BMC Biol 3: 26.
[13]  Peterson DS, Gao Y, Asokan K, Gaertig J (2002) The circumsporozoite protein of is expressed and localized to the cell surface in the free-living ciliate . Mol Biochem Parasitol 122: 119–126.
[14]  Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58: 233–267.
[15]  Martindale DW, Allis CD, Bruns PJ (1982) Conjugation in . A temporal analysis of cytological stages. Exp Cell Res 140: 227–236.
[16]  Yao MC, Chao JL (2005) RNA-guided DNA deletion in Tetrahymena: An RNAi-based mechanism for programmed genome rearrangements. Annu Rev Genet 39: 537–559.
[17]  Yao MC, Duharcourt S, Chalker DL (2002) Genome-wide rearrangements of DNA in ciliates. In: Craig N, Craigie R, Gellert M, Lambowitz A, editors. Mobile DNA II. Herndon (Virginia): ASM Press. pp. 730–758. pp.
[18]  Yao MC, Choi J, Yokoyama S, Austerberry CF, Yao CH (1984) DNA elimination in Tetrahymena: A developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell 36: 433–440.
[19]  Yao MC, Gorovsky MA (1974) Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis. Chromosoma 48: 1–18.
[20]  Iwamura Y, Sakai M, Muramatsu M (1982) Rearrangement of repeated DNA sequences during development of macronucleus in . Nucleic Acids Res 10: 4279–4291.
[21]  Jenuwein T (2002) Molecular biology. An RNA-guided pathway for the epigenome. Science 297: 2215–2218.
[22]  Selker EU (2003) Molecular biology. A self-help guide for a trim genome. Science 300: 1517–1518.
[23]  Fan Q, Yao MC (2000) A long stringent sequence signal for programmed chromosome breakage in . Nucleic Acids Res 28: 895–900.
[24]  Hamilton EP, Williamson S, Dunn S, Merriam V, Lin C, et al. (2006) The highly conserved family of chromosome breakage elements contains an invariant 10-base-pair core. Eukaryot Cell 5: 771–780.
[25]  Yao MC, Yao CH, Monks B (1990) The controlling sequence for site-specific chromosome breakage in Tetrahymena. Cell 63: 763–772.
[26]  Fan Q, Yao M (1996) New telomere formation coupled with site-specific chromosome breakage in . Mol Cell Biol 16: 1267–1274.
[27]  Yu GL, Blackburn EH (1991) Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 67: 823–832.
[28]  Altschuler MI, Yao MC (1985) Macronuclear DNA of exists as defined subchromosomal-sized molecules. Nucleic Acids Res 13: 5817–5831.
[29]  Conover RK, Brunk CF (1986) Macronuclear DNA molecules of . Mol Cell Biol 6: 900–905.
[30]  Kapler GM (1993) Developmentally regulated processing and replication of the Tetrahymena rDNA minichromosome. Curr Opin Genet Dev 3: 730–735.
[31]  Doerder FP, Deak JC, Lief JH (1992) Rate of phenotypic assortment in . Dev Genet 13: 126–132.
[32]  Ray C Jr (1956) Preparation of chromosomes of Tetrahymena pyriformis for photomicrography. Stain Technol 31: 271–274.
[33]  LaFountain JR Jr, Davidson LA (1979) An analysis of spindle ultrastructure during prometaphase and metaphase of micronuclear division in Tetrahymena. Chromosoma 75: 293–308.
[34]  LaFountain JR Jr, Davidson LA (1980) An analysis of spindle ultrastructure during anaphase of micronuclear division in Tetrahymena. Cell Motil 1: 41–61.
[35]  Mochizuki K, Gorovsky MA (2004) Small RNAs in genome rearrangement in Tetrahymena. Curr Opin Genet Dev 14: 181–187.
[36]  Orias E (2000) Toward sequencing the Tetrahymena genome: Exploiting the gift of nuclear dimorphism. J Eukaryot Microbiol 47: 328–333.
[37]  Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, et al. (2000) A whole-genome assembly of Drosophila. Science 287: 2196–2204.
[38]  Brunk CF, Lee LC, Tran AB, Li J (2003) Complete sequence of the mitochondrial genome of and comparative methods for identifying highly divergent genes. Nucleic Acids Res 31: 1673–1682.
[39]  Engberg J, Nielsen H (1990) Complete sequence of the extrachromosomal rDNA molecule from the ciliate strain B1868VII. Nucleic Acids Res 18: 6915–6919.
[40]  Wong L, Klionsky L, Wickert S, Merriam V, Orias E, et al. (2000) Autonomously replicating macronuclear DNA pieces are the physical basis of genetic coassortment groups in . Genetics 155: 1119–1125.
[41]  Cassidy-Hanley D, Bisharyan Y, Fridman V, Gerber J, Lin C, et al. (2005) Genome-wide characterization of chromosome breakage sites. II. Physical and genetic mapping. Genetics 170: 1623–1631.
[42]  Yao MC, Zheng K, Yao CH (1987) A conserved nucleotide sequence at the sites of developmentally regulated chromosomal breakage in Tetrahymena. Cell 48: 779–788.
[43]  Karrer KM (2000) Tetrahymena genetics: Two nuclei are better than one. Methods Cell Biol 62: 127–186.
[44]  Cervantes MD, Xi X, Vermaak D, Yao MC, Malik HS (2006) The CNA1 histone of the ciliate is essential for chromosome segregation in the germline micronucleus. Mol Biol Cell 17: 485–497.
[45]  Pryde FE, Gorham HC, Louis EJ (1997) Chromosome ends: All the same under their caps. Curr Opin Genet Dev 7: 822–828.
[46]  Wellinger RJ, Sen D (1997) The DNA structures at the ends of eukaryotic chromosomes. Eur J Cancer 33: 735–749.
[47]  Barry JD, Ginger ML, Burton P, McCulloch R (2003) Why are parasite contingency genes often associated with telomeres? Int J Parasitol 33: 29–45.
[48]  Gao W, Khang CH, Park SY, Lee YH, Kang S (2002) Evolution and organization of a highly dynamic, subtelomeric helicase gene family in the rice blast fungus . Genetics 162: 103–112.
[49]  Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3: 91–102.
[50]  Teunissen AW, Steensma HY (1995) Review: The dominant flocculation genes of constitute a new subtelomeric gene family. Yeast 11: 1001–1013.
[51]  Louis EJ (1995) The chromosome ends of . Yeast 11: 1553–1573.
[52]  Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, et al. (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31: 5654–5666.
[53]  Calzone FJ, Stathopoulos VA, Grass D, Gorovsky MA, Angerer RC (1983) Regulation of protein synthesis in Tetrahymena. RNA sequence sets of growing and starved cells. J Biol Chem 258: 6899–6905.
[54]  Zagulski M, Nowak JK, Le Mouel A, Nowacki M, Migdalski A, et al. (2004) High coding density on the largest somatic chromosome. Curr Biol 14: 1397–1404.
[55]  Erdmann VA, Wolters J, Huysmans E, Vandenberghe A, De Wachter R (1984) Collection of published 5S and 5.8S ribosomal RNA sequences. Nucleic Acids Res 12(Suppl): r133–r166.
[56]  Luehrsen KR, Fox GE, Woese CR (1980) The sequence of 5S ribosomal ribonucleic acid. Curr Microbiol 4: 123–126.
[57]  Kimmel AR, Gorovsky MA (1976) Numbers of 5S and tRNA genes in macro- and micronuclei of . Chromosoma 54: 327–337.
[58]  Horowitz S, Gorovsky MA (1985) An unusual genetic code in nuclear genes of Tetrahymena. Proc Natl Acad Sci U S A 82: 2452–2455.
[59]  Driscoll DM, Copeland PR (2003) Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr 23: 17–40.
[60]  Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22: 3565–3576.
[61]  Shrimali RK, Lobanov AV, Xu XM, Rao M, Carlson BA, et al. (2005) Selenocysteine tRNA identification in the model organisms and . Biochem Biophys Res Commun 329: 147–151.
[62]  Wuitschick JD, Karrer KM (1999) Analysis of genomic G + C content, codon usage, initiator codon context and translation termination sites in . J Eukaryot Microbiol 46: 239–247.
[63]  Wuitschick JD, Karrer KM (2000) Codon usage in . Methods Cell Biol 62: 565–568.
[64]  Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, et al. (2005) The genome of the social amoeba . Nature 435: 43–57.
[65]  Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T (2001) Codon usage and tRNA genes in eukaryotes: Correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 53: 290–298.
[66]  Lynch M, Conery JS (2003) The origins of genome complexity. Science 302: 1401–1404.
[67]  Katz LA, Snoeyenbos-West O, Doerder FP (2006) Patterns of protein evolution in : Implications for estimates of effective population size. Mol Biol Evol 23: 608–614.
[68]  Fast NM, Xue L, Bingham S, Keeling PJ (2002) Re-examining alveolate evolution using multiple protein molecular phylogenies. J Eukaryot Microbiol 49: 30–37.
[69]  Gajadhar AA, Marquardt WC, Hall R, Gunderson J, Ariztia-Carmona EV, et al. (1991) Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol 45: 147–154.
[70]  Gardner MJ, Williamson DH, Wilson RJ (1991) A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem Parasitol 44: 115–123.
[71]  Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46: 347–366.
[72]  Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genome sequence of the human malaria parasite . Nature 419: 498–511.
[73]  Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, et al. (2005) Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 280: 30557–30563.
[74]  The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant . Nature 408: 796–815.
[75]  Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: From endosymbionts to organelles. Science 304: 253–257.
[76]  Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, et al. (2004) Tropical infectious diseases: Metabolic maps and functions of the apicoplast. Nat Rev Microbiol 2: 203–216.
[77]  Erwin JA, Beach D, Holz GG Jr (1966) Effect of dietary cholesterol on unsaturated fatty acid biosynthesis in a ciliated protozoan. Biochim Biophys Acta 125: 614–616.
[78]  Holz GG Jr, Erwin J, Rosenbaum N, Aaronson S (1962) Triparanol inhibition of Tetrahymena, and its prevention by lipids. Arch Biochem Biophys 98: 312–322.
[79]  Holz GG Jr, Wagner B, Erwin J, Britt JJ, Bloch K (1961) Sterol requirements of a ciliate Th-X. I. A nutritional analysis of the sterol requirements of Th-X. II. Metabolism of tritiated lopohenol in Th-X. Comp Biochem Physiol 2: 202–217.
[80]  Corliss JO (1979) The impact of electron microscopy on ciliate systematics. Am Zool 19: 573–587.
[81]  Lynn DH (1981) The organization and evolution of microtubular organelles in ciliated protozoa. Biol Rev 56: 243–292.
[82]  Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, et al. (2004) Complete genome sequence of the apicomplexan, . Science 304: 441–445.
[83]  Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, et al. (2004) Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 5: R88.
[84]  Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. (2003) The genome sequence of the filamentous fungus . Nature 422: 859–868.
[85]  Galagan JE, Selker EU (2004) RIP: The evolutionary cost of genome defense. Trends Genet 20: 417–423.
[86]  Liu Y, Song X, Gorovsky MA, Karrer KM (2005) Elimination of foreign DNA during somatic differentiation in shows position effect and is dosage dependent. Eukaryot Cell 4: 421–431.
[87]  Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA (2002) Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 110: 689–699.
[88]  Yao MC, Fuller P, Xi X (2003) Programmed DNA deletion as an RNA-guided system of genome defense. Science 300: 1581–1584.
[89]  Doerder FP, Gates MA, Eberhardt FP, Arslanyolu M (1995) High frequency of sex and equal frequencies of mating types in natural populations of the ciliate . Proc Natl Acad Sci U S A 92: 8715–8718.
[90]  Fillingham JS, Thing TA, Vythilingum N, Keuroghlian A, Bruno D, et al. (2004) A nonlong terminal repeat retrotransposon family is restricted to the germ line micronucleus of the ciliated protozoan . Eukaryot Cell 3: 157–169.
[91]  Wuitschick JD, Gershan JA, Lochowicz AJ, Li S, Karrer KM (2002) A novel family of mobile genetic elements is limited to the germline genome in . Nucleic Acids Res 30: 2524–2537.
[92]  Pritham EJ, Feschotte C, Wessler SR (2005) Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans. Mol Biol Evol 22: 1751–1763.
[93]  Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM (2005) A potentially functional mariner transposable element in the protist . Mol Biol Evol 22: 126–134.
[94]  Foss EJ, Garrett PW, Kinsey JA, Selker EU (1991) Specificity of repeat-induced point mutation (RIP) in Neurospora: Sensitivity of nonNeurospora sequences, a natural diverged tandem duplication, and unique DNA adjacent to a duplicated region. Genetics 127: 711–717.
[95]  Bowman GR, Smith DG, Michael Siu KW, Pearlman RE, Turkewitz AP (2005) Genomic and proteomic evidence for a second family of dense core granule cargo proteins in . J Eukaryot Microbiol 52: 291–297.
[96]  Elde NC, Morgan G, Winey M, Sperling L, Turkewitz AP (2005) Elucidation of clathrin-mediated endocytosis in Tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PLoS Genetics 1: e52.. DOI: 10.1371/journal.pgen.0010052.
[97]  Herrmann L, Erkelenz M, Aldag I, Tiedtke A, Hartmann MW (2006) Biochemical and molecular characterisation of extracellular cysteine proteases. BMC Microbiol 6: 19.
[98]  Kuribara S, Kato M, Kato-Minoura T, Numata O (2006) Identification of a novel actin-related protein in Tetrahymena cilia. Cell Motil Cytoskeleton 63: 437–446.
[99]  Lee SR, Collins K (2006) Two classes of endogenous small RNAs in . Genes Dev 20: 28–33.
[100]  Stemm-Wolf AJ, Morgan G, Giddings TH Jr, White EA, Marchione R, et al. (2005) Basal body duplication and maintenance require one member of the centrin gene family. Mol Biol Cell 16: 3606–3619.
[101]  Wickstead B, Gull K (2006) A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17: 1734–1743.
[102]  Williams SA, Gavin RH (2005) Myosin genes in Tetrahymena. Cell Motil Cytoskeleton 61: 237–243.
[103]  Wloga D, Camba A, Rogowski K, Manning G, Jerka-Dziadosz M, et al. (2006) Members of the Nima-related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell 17: 2799–2810.
[104]  Global analysis of protein kinase genes in sequenced genomes. Available: http://kinase.com. Accessed 15 July 2006.
[105]  Manning G, Plowman GD, Hunter T, Sudarsanam S (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 27: 514–520.
[106]  Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, et al. (2006) The dictyostelium kinome—Analysis of the protein kinases from a simple model organism. PLoS Genet 2: e38.. DOI: 10.1371/journal.pgen.0020038.
[107]  Christensen ST, Guerra CF, Awan A, Wheatley DN, Satir P (2003) Insulin receptor-like proteins in ciliary membranes. Curr Biol 13: R50–R52.
[108]  Manning G, Caenepeel S (2005) Protein kinases in human disease. 2005–06 Catalog and technical reference. Beverly (Massachusetts): Cell Signaling Technologies. pp. 402–409. pp.
[109]  O'Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13: 221–228.
[110]  Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, et al. (2000) Interaction of the Unc-51-like kinase and microtubule-associated protein light chain 3 related proteins in the brain: Possible role of vesicular transport in axonal elongation. Brain Res Mol Brain Res 85: 1–12.
[111]  Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: Key signal transducers outside the animal kingdom. Genome Biol 3: reviews3013.
[112]  Hanks SK (2003) Genomic analysis of the eukaryotic protein kinase superfamily: A perspective. Genome Biol 4: 111.
[113]  Ren Q, Kang KH, Paulsen IT (2004) TransportDB: A relational database of cellular membrane transport systems. Nucleic Acids Res 32: D284–D288.
[114]  Haynes WJ, Ling KY, Saimi Y, Kung C (2003) PAK paradox: Paramecium appears to have more K(+)-channel genes than humans. Eukaryot Cell 2: 737–745.
[115]  Kung C, Saimi Y (1982) The physiological basis of taxes in Paramecium. Annu Rev Physiol 44: 519–534.
[116]  Hennessey T, Machemer H, Nelson DL (1985) Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol 36: 153–156.
[117]  Weber JH, Vishnyakov A, Hambach K, Schultz A, Schultz JE, et al. (2004) Adenylyl cyclases from Plasmodium, Paramecium and Tetrahymena are novel ion channel/enzyme fusion proteins. Cell Signal 16: 115–125.
[118]  Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: A comparative genomic approach. Nat Rev Genet 4: 544–558.
[119]  Rawlings ND, Tolle DP, Barrett AJ (2004) MEROPS: The peptidase database. Nucleic Acids Res 32: D160–D164.
[120]  Southan C (2001) A genomic perspective on human proteases. FEBS Lett 498: 214–218.
[121]  Barrett AJ, Rawlings ND, Woessner JF, editors. (1998) Handbook of proteolytic enzymes. San Diego: Academic Press. 1666 p.
[122]  Wu Y, Wang X, Liu X, Wang Y (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13: 601–616.
[123]  Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28: 295–317.
[124]  Gruszynski AE, DeMaster A, Hooper NM, Bangs JD (2003) Surface coat remodeling during differentiation of . J Biol Chem 278: 24665–24672.
[125]  LaCount DJ, Gruszynski AE, Grandgenett PM, Bangs JD, Donelson JE (2003) Expression and function of the major surface protease (GP63) genes. J Biol Chem 278: 24658–24664.
[126]  Yao C, Donelson JE, Wilson ME (2003) The major surface protease (MSP or GP63) of sp. Biosynthesis, regulation of expression, and function. Mol Biochem Parasitol 132: 1–16.
[127]  Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, et al. (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9: 911–917.
[128]  Frankel J (2000) Cell biology of . Methods Cell Biol 62: 27–125.
[129]  Williams NE (2000) Preparation of cytoskeletal fractions from . Methods Cell Biol 62: 441–447.
[130]  Dutcher SK (2003) Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Curr Opin Microbiol 6: 634–640.
[131]  Gaertig J, Thatcher TH, McGrath KE, Callahan RC, Gorovsky MA (1993) Perspectives on tubulin isotype function and evolution based on the observation that microtubules contain a single alpha- and beta-tubulin. Cell Motil Cytoskeleton 25: 243–253.
[132]  McGrath KE, Yu SM, Heruth DP, Kelly AA, Gorovsky MA (1994) Regulation and evolution of the single alpha-tubulin gene of the ciliate . Cell Motil Cytoskeleton 27: 272–283.
[133]  Shang Y, Li B, Gorovsky MA (2002) contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J Cell Biol 158: 1195–1206.
[134]  Dupuis-Williams P, Fleury-Aubusson A, de Loubresse NG, Geoffroy H, Vayssie L, et al. (2002) Functional role of epsilon-tubulin in the assembly of the centriolar microtubule scaffold. J Cell Biol 158: 1183–1193.
[135]  Ruiz F, Dupuis-Williams P, Klotz C, Forquignon F, Bergdoll M, et al. (2004) Genetic evidence for interaction between eta- and beta-tubulins. Eukaryot Cell 3: 212–220.
[136]  Ruiz F, Krzywicka A, Klotz C, Keller A, Cohen J, et al. (2000) The SM19 gene, required for duplication of basal bodies in Paramecium, encodes a novel tubulin, eta-tubulin. Curr Biol 10: 1451–1454.
[137]  Duan J, Gorovsky MA (2002) Both carboxy-terminal tails of alpha- and beta-tubulin are essential, but either one will suffice. Curr Biol 12: 313–316.
[138]  Thazhath R, Liu C, Gaertig J (2002) Polyglycylation domain of beta-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nat Cell Biol 4: 256–259.
[139]  Xia L, Hai B, Gao Y, Burnette D, Thazhath R, et al. (2000) Polyglycylation of tubulin is essential and affects cell motility and division in . J Cell Biol 149: 1097–1106.
[140]  Gibbons IR, Rowe AJ (1965) Dynein: A protein with adenosine triphosphatase activity from cilia. Science 149: 424–426.
[141]  Gibbons IR, Lee-Eiford A, Mocz G, Phillipson CA, Tang WJ, et al. (1987) Photosensitized cleavage of dynein heavy chains. Cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J Biol Chem 262: 2780–2786.
[142]  King SM (2000) The dynein microtubule motor. Biochim Biophys Acta 1496: 60–75.
[143]  Sakato M, King SM (2004) Design and regulation of the AAA+ microtubule motor dynein. J Struct Biol 146: 58–71.
[144]  Asai DJ, Koonce MP (2001) The dynein heavy chain: Structure, mechanics and evolution. Trends Cell Biol 11: 196–202.
[145]  Asai DJ, Wilkes DE (2004) The dynein heavy chain family. J Eukaryot Microbiol 51: 23–29.
[146]  Sailaja G, Lincoln LM, Chen J, Asai DJ (2001) Evaluating the dynein heavy chain gene family in Tetrahymena. Methods Mol Biol 161: 17–27.
[147]  Xu W, Royalty MP, Zimmerman JR, Angus SP, Pennock DG (1999) The dynein heavy chain gene family in . J Eukaryot Microbiol 46: 606–611.
[148]  Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103: 3681–3686.
[149]  Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, et al. (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308: 1758–1762.
[150]  Osmani SA, Engle DB, Doonan JH, Morris NR (1988) Spindle formation and chromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. Cell 52: 241–251.
[151]  Fry AM, Meraldi P, Nigg EA (1998) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17: 470–481.
[152]  Mahjoub MR, Montpetit B, Zhao L, Finst RJ, Goh B, et al. (2002) The FA2 gene of Chlamydomonas encodes a NIMA family kinase with roles in cell cycle progression and microtubule severing during deflagellation. J Cell Sci 115: 1759–1768.
[153]  Turkewitz AP (2004) Out with a bang! Tetrahymena as a model system to study secretory granule biogenesis. Traffic 5: 63–68.
[154]  Bock JB, Matern HT, Peden AA, Scheller RH (2001) A genomic perspective on membrane compartment organization. Nature 409: 839–841.
[155]  Ackers JP, Dhir V, Field MC (2005) A bioinformatic analysis of the RAB genes of . Mol Biochem Parasitol 141: 89–97.
[156]  Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2: reviews3007.
[157]  Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313: 889–901.
[158]  Saito-Nakano Y, Loftus BJ, Hall N, Nozaki T (2005) The diversity of Rab GTPases in . Exp Parasitol 110: 244–252.
[159]  Lal K, Field MC, Carlton JM, Warwicker J, Hirt RP (2005) Identification of a very large Rab GTPase family in the parasitic protozoan . Mol Biochem Parasitol 143: 226–235.
[160]  Muller HM, Kenny EE, Sternberg PW (2004) Textpresso: An ontology-based information retrieval and extraction system for biological literature. PLoS Biol 2: e309.
[161]  Stein LD, Mungall C, Shu S, Caudy M, Mangone M, et al. (2002) The generic genome browser: A building block for a model organism system database. Genome Res 12: 1599–1610.
[162]  Dear PH, Cook PR (1993) Happy mapping: Linkage mapping using a physical analogue of meiosis. Nucleic Acids Res 21: 13–20.
[163]  Elliott AM, Gruchy DF (1952) The occurence of mating types in Tetrahymena. Biol Bull (Woods Hole, MA) 105: 301.
[164]  Mayo KA, Orias E (1981) Further evidence for lack of gene expression in the Tetrahymena micronucleus. Genetics 98: 747–762.
[165]  Allen SL, Gibson I (1973) Genetics of Tetrahymena. In: Elliott AM, editor. Biology of Tetrahymena. Stroudsburg (Pennsylvania): Dowden, Hutchinson and Ross. pp. 307–373. pp.
[166]  Allen SL (1967) Genomic exclusion: A rapid means for inducing homozygous diploid lines in Tetrahymena pyriformis, syngen 1. Science 155: 575–577.
[167]  Ward N, Eisen J, Fraser C, Stackebrandt E (2001) Sequenced strains must be saved from extinction. Nature 414: 148.
[168]  Gorovsky MA, Yao MC, Keevert JB, Pleger GL (1975) Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol 9: 311–327.
[169]  Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. (2001) The sequence of the human genome. Science 291: 1304–1351.
[170]  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile and open software for comparing large genomes. Genome Biol 5: R12.
[171]  Lynch TJ, Brickner J, Nakano KJ, Orias E (1995) Genetic map of randomly amplified DNA polymorphisms closely linked to the mating type locus of . Genetics 141: 1315–1325.
[172]  Hamilton E, Bruns P, Lin C, Merriam V, Orias E, et al. (2005) Genome-wide characterization of chromosome breakage sites. I. Cloning and identification of functional sites. Genetics 170: 1611–1621.
[173]  Birren B, Lai E (1993) Pulsed field gel electrophoresis—A practical guide. New York: Academic Press.
[174]  Eddy SR, Durbin R (1994) RNA sequence analysis using covariance models. Nucleic Acids Res 22: 2079–2088.
[175]  Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.
[176]  Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: An RNA family database. Nucleic Acids Res 31: 439–441.
[177]  Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. (2005) Rfam: Annotating noncoding RNAs in complete genomes. Nucleic Acids Res 33: D121–D124.
[178]  Weinberg Z, Ruzzo WL (2004) Exploiting conserved structure for faster annotation of noncoding RNAs without loss of accuracy. Bioinformatics 20(Suppl 1): I334–I341.
[179]  Orum H, Nielsen H, Engberg J (1993) Sequence and proposed secondary structure of the U3-snRNA. Nucleic Acids Res 21: 2511.
[180]  Weinberg Z, Ruzzo WL (2006) Sequence-based heuristics for faster annotation of noncoding RNA families. Bioinformatics 22: 35–39.
[181]  Majoros WH, Pertea M, Salzberg SL (2004) TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics 20: 2878–2879.
[182]  Korf I (2004) Gene finding in novel genomes. BMC Bioinformatics 5: 59.
[183]  Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, et al. (2003) TRANSFAC: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374–378.
[184]  Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H (1999) Interpolated Markov models for eukaryotic gene finding. Genomics 59: 24–31.
[185]  Edgar RC (2004) MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.
[186]  Howe K, Bateman A, Durbin R (2002) QuickTree: Building huge Neighbour-Joining trees of protein sequences. Bioinformatics 18: 1546–1547.
[187]  Scharfe C, Zaccaria P, Hoertnagel K, Jaksch M, Klopstock T, et al. (2000) MITOP, the mitochondrial proteome database: 2000 Update. Nucleic Acids Res 28: 155–158.
[188]  Scharfe C, Zaccaria P, Hoertnagel K, Jaksch M, Klopstock T, et al. (1999) MITOP: Database for mitochondria-related proteins, genes and diseases. Nucleic Acids Res 27: 153–155.
[189]  Benson G (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 27: 573–580.
[190]  Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[191]  Gershan JA, Karrer KM (2000) A family of developmentally excised DNA elements in Tetrahymena is under selective pressure to maintain an open reading frame encoding an integrase-like protein. Nucleic Acids Res 28: 4105–4112.
[192]  Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159: 1103–1115.
[193]  Ogurtsov AY, Roytberg MA, Shabalina SA, Kondrashov AS (2002) OWEN: Aligning long collinear regions of genomes. Bioinformatics 18: 1703–1704.
[194]  Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: Multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26: 320–322.
[195]  Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 305: 567–580.
[196]  Ren Q, Paulsen IT (2005) Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Comput Biol 1: e27.. DOI: 10.1371/journal.pcbi.0010027.
[197]  Baldauf SL (2003) The deep roots of eukaryotes. Science 300: 1703–1706.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133