全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2006 

Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex

DOI: 10.1371/journal.pbio.0040382

Full-Text   Cite this paper   Add to My Lib

Abstract:

Primary sensory cortical areas receive information through multiple thalamic channels. In the rodent whisker system, lemniscal and paralemniscal thalamocortical projections, from the ventral posteromedial nucleus (VPM) and posterior medial nucleus (POm) respectively, carry distinct types of sensory information to cortex. Little is known about how these separate streams of activity are parsed and integrated within the neocortical microcircuit. We used quantitative laser scanning photostimulation to probe the organization of functional thalamocortical and ascending intracortical projections in the mouse barrel cortex. To map the thalamocortical projections, we recorded from neocortical excitatory neurons while stimulating VPM or POm. Neurons in layers (L)4, L5, and L6A received dense input from thalamus (L4, L5B, and L6A from VPM; and L5A from POm), whereas L2/3 neurons rarely received thalamic input. We further mapped the lemniscal and paralemniscal circuits from L4 and L5A to L2/3. Lemniscal L4 neurons targeted L3 within a column. Paralemniscal L5A neurons targeted a superficial band (thickness, 60 μm) of neurons immediately below L1, defining a functionally distinct L2 in the mouse barrel cortex. L2 neurons received input from lemniscal L3 cells and paralemniscal L5A cells spread over multiple columns. Our data indicate that lemniscal and paralemniscal information is segregated into interdigitated cortical layers.

References

[1]  Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex. Brain Res 17: 205–242.
[2]  Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41: 365–379.
[3]  Rice FL (1995) Comparative aspects of barrel structure and development. In: Jones EG, Diamond IT, editors. The barrel cortex of rodents. New York: Plenum Press. pp. 1–76.
[4]  Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res 26: 259–275.
[5]  Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543: 49–70.
[6]  Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41: 798–820.
[7]  Armstrong-James M, Fox K (1987) Spatiotemporal convergence and divergence in the rat S1 “barrel” cortex. J Comp Neurol 263: 265–281.
[8]  Brecht M, Roth A, Sakmann B (2003) Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 553: 243–265.
[9]  Lu SM, Lin RCS (1993) Thalamic afferents of the rat barrel cortex: A light- and electron-microscopic study using leucoagglutinin as an anterograde tracer. Somatosens Mot Res 10: 1–16.
[10]  Koralek KA, Jensen KF, Killackey HP (1988) Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex. Brain Res 463: 346–351.
[11]  Chmielowska J, Carvell GE, Simons DJ (1989) Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol 285: 325–338.
[12]  Kim U, Ebner FF (1999) Barrels and septa: Separate circuits in rat barrels field cortex. J Comp Neurol 408: 489–505.
[13]  Shepherd GMG, Svoboda K (2005) Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J Neurosci 25: 5670.
[14]  Welker C, Woolsey TA (1974) Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse. J Comp Neurol 158: 437.
[15]  Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302–306.
[16]  Diamond ME (1995) Somatosensory thalamus of the rat. In: Jones EG, Diamond IT, editors. The barrel cortex of rodents. New York: Plenum Press. pp. 189–219.
[17]  Yu C, Derdikman D, Haidarliu S, Ahissar E (2006) Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol 4: e124.. DOI: 10.1371/journal.pbio.0040124.
[18]  Ahissar E, Sosnik R, Bagdasarian K, Haidarliu S (2001) Temporal frequency of whisker movement. II. Laminar organization of cortical representations. J Neurophysiol 86: 354–367.
[19]  Manns ID, Sakmann B, Brecht M (2004) Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J Physiol 556: 601–622.
[20]  Fox K, Wright N, Wallace H, Glazewski S (2003) The origin of cortical surround receptive fields studied in the barrel cortex. J Neurosci 23: 8380–8391.
[21]  Chiaia NL, Rhoades RW, Fish SE, Killackey HP (1991) Thalamic processing of vibrissal information in the rat: II. Morphological and functional properties of medial ventral posterior nucleus and posterior nucleus neurons. J Comp Neurol 314: 217–236.
[22]  Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318: 462–476.
[23]  Callaway EM, Katz LC (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc Natl Acad Sci U S A 90: 7661–7665.
[24]  Dalva MB, Katz LC (1994) Rearrangements of synaptic connections in visual cortex revealed by laser photostimulation. Science 265: 255–258.
[25]  Schubert D, Staiger JF, Cho N, Kotter R, Zilles K, et al. (2001) Layer-specific intracolumnar and transcolumnar functional connectivity of layer V pyramidal cells in rat barrel cortex. J Neurosci 21: 3580–3592.
[26]  Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3: 701–707.
[27]  Reichova I, Sherman SM (2004) Somatosensory corticothalamic projections: distinguishing drivers from modulators. J Neurophysiol 92: 2185–2197.
[28]  Shepherd GM, Pologruto TA, Svoboda K (2003) Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron 38: 277–289.
[29]  Shepherd GMG, Stepanyants A, Bureau I, Chklovskii DB, Svoboda K (2005) Geometric and functional organization of cortical circuits. Nat Neurosci 8: 782–790.
[30]  Chiaia NL, Rhoades RW, Bennett-Clarke CA, Fish SE, Killackey HP (1991) Thalamic processing of vibrissal information in the rat. I. Afferent input to the medial ventral posterior and posterior nuclei. J Comp Neurol 314: 201–216.
[31]  Veinante P, Jacquin MF, Deschenes M (2000) Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat. J Comp Neurol 420: 233–243.
[32]  Deschenes M, Veinante P, Zhang ZW (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev 28: 286–308.
[33]  Haidarliu S, Ahissar E (2001) Size gradients of barreloids in the rat thalamus. J Comp Neurol 429: 372–387.
[34]  Agmon A, Yang LT, Jones EG, O'Dowd DK (1995) Topological precision in the thalamic projection to neonatal mouse barrel cortex. J Neurosci 15: 549–561.
[35]  Land PW, Buffer SA Jr., Yaskosky JD (1995) Barreloids in adult rat thalamus: Three-dimensional architecture and relationship to somatosensory cortical barrels. J Comp Neurol 355: 573–588.
[36]  Fabri M, Burton H (1991) Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 538: 351–357.
[37]  Krubitzer LA, Kaas JH (1992) The somatosensory thalamus of monkeys: Cortical connections and a redefinition of nuclei in marmosets. J Comp Neurol 319: 123–140.
[38]  Nothias F, Peschanski M, Besson JM (1988) Somatotopic reciprocal connections between the somatosensory cortex and the thalamic Po nucleus in the rat. Brain Res 447: 169–174.
[39]  Bureau I, Shepherd GM, Svoboda K (2004) Precise development of functional and anatomical columns in the neocortex. Neuron 42: 789–801.
[40]  Petersen CC, Sakmann B (2001) Functionally independent columns of rat somatosensory barrel cortex revealed with voltage-sensitive dye imaging. J Neurosci 21: 8435–8446.
[41]  Peters A, Kara DA (1985) The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells. J Comp Neurol 234: 218–241.
[42]  van Brederode JF, Foehring RC, Spain WJ (2000) Morphological and electrophysiological properties of atypically oriented layer 2 pyramidal cells of the juvenile rat neocortex. Neuroscience 101: 851–861.
[43]  Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6: 955–965.
[44]  Veinante P, Deschenes M (1999) Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. J Neurosci 19: 5085–5095.
[45]  Pierret T, Lavallee P, Deschenes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20: 7455–7462.
[46]  Callaway EM (2005) Structure and function of parallel pathways in the primate early visual system. J Physiol 566: 13–19.
[47]  White EL (1978) Identified neurons in mouse Sml cortex which are postsynaptic to thalamocortical axon terminals: A combined Golgi-electron microscopic and degeneration study. J Comp Neurol 181: 627–661.
[48]  Armstrong-James M, Fox K, Das-Gupta A (1992) Flow of excitation within rat barrel cortex on striking a single vibrissa. J Neurosci 68: 1345–1354.
[49]  Feldmeyer D, Roth A, Sakmann B (2005) Monosynaptic connections between pairs of spiny stellate cells in layer 4 and pyramidal cells in layer 5A indicate that lemniscal and paralemniscal afferent pathways converge in the infragranular somatosensory cortex. J Neurosci 25: 3423–3431.
[50]  Schubert D, Kotter R, Luhmann HJ, Staiger JF (2006) Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. Cereb Cortex 16: 223–236.
[51]  Jensen KF, Killackey HP (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents. J Neurosci 7: 3529–3543.
[52]  Welker C (1976) Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol 166: 173–189.
[53]  Keller A, Carlson GC (1999) Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex. J Comp Neurol 412: 83–94.
[54]  Laaris N, Carlson GC, Keller A (2000) Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci 20: 1529–1537.
[55]  Feldmeyer D, Lubke J, Silver RA, Sakmann B (2002) Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: Physiology and anatomy of interlaminar signalling within a cortical column. J Physiol 538: 803–822.
[56]  Lubke J, Roth A, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13: 1051–1063.
[57]  Lee LJ, Iwasato T, Itohara S, Erzurumlu RS (2005) Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol 485: 280–292.
[58]  Finnerty GT, Roberts LS, Connors BW (1999) Sensory experience modifies the short-term dynamics of neocortical synapses. Nature 400: 367–371.
[59]  Canepari M, Nelson L, Papageorgiou G, Corrie JE, Ogden D (2001) Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Methods 112: 29–42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133