全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2006 

The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

DOI: 10.1371/journal.pbio.0040383

Full-Text   Cite this paper   Add to My Lib

Abstract:

Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

References

[1]  Karl DM, Wirsen CO, Jannasch HW (1980) Deep-sea primary production at the Galápagos hydrothermal vents. Science 207: 1345–1346.
[2]  Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha- and, gamma-Proteobacteria from the deep sea. Appl Environ Microbiol 69: 2906–2913.
[3]  Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, et al. (2005) A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science 307: 1428–1434.
[4]  Johnson KS, Childress JJ, Beehler CL (1988) Short term temperature variability in the Rose Garden hydrothermal vent field. Deep-Sea Res 35: 1711–1722.
[5]  Goffredi SK, Childress JJ, Desaulniers NT, Lee RW, Lallier FH, et al. (1997) Inorganic carbon acquisition by the hydrothermal vent tubeworm depends upon high external P-CO2 and upon proton-equivalent ion transport by the worm. J Exp Biol 200: 883–896.
[6]  Jannasch H, Wirsen C, Nelson D, Robertson L (1985) sp. nov., a colorless, sulfur-oxidizing bacterium from a deep-sea hydrothermal vent. Int J Syst Bacteriol 35: 422–424.
[7]  Wirsen CO, Brinkhoff T, Kuever J, Muyzer G, Molyneaux S, et al. (1998) Comparison of a new Thiomicrospira strain from the Mid-Atlantic Ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64: 4057–4059.
[8]  Muyzer G, A, Teske C.O, Wirsen , Jannasch H.W (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165–172.
[9]  Brinkhoff T, Sievert SM, Kuever J, Muyzer G (1999) Distribution and diversity of sulfur-oxidizing spp. at a shallow-water hydrothermal vent in the Aegean Sea (Milos, Greece). Appl Environ Microbiol 65: 3843–3849.
[10]  Ruby EG, Wirsen CO, Jannasch HW (1981) Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl Environ Microbiol 42: 317–324.
[11]  Ruby EG, Jannasch HW (1982) Physiological characteristics of sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149: 161–165.
[12]  Wirsen CO, Brinkhoff T, Kuever J, Muyzer G, Jannasch HW, et al. (1998) Comparison of a new Thiomicrospira strain from the Mid-Atlantic Ridge with known hydrothermal vent isolates. Appl Environ Microbiol 64: 4057–4059.
[13]  Scott KM, Bright M, Fisher CR (1998) The burden of independence: Inorganic carbon utilization strategies of the sulphur chemoautotrophic hydrothermal vent isolate and the symbionts of hydrothermal vent and cold seep vestimentiferans. Cah Biol Mar 39: 379–381.
[14]  Dobrinski KP, Longo DL, Scott KM (2005) A hydrothermal vent chemolithoautotroph with a carbon concentrating mechanism. J Bacteriol 187: 5761–5766.
[15]  Ahmad A, Barry JP, Nelson DC (1999) Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating sp. from Monterey Canyon, California, with spp. Appl Environ Microbiol 65: 270–277.
[16]  Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann I, et al. (2003) Genome sequence of the cyanobacterium SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A 100: 10020–10025.
[17]  Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, et al. (2003) The genome of a motile marine Synechococcus. Nature 424: 1037–1042.
[18]  Chain P, Lamerdin J, Larimer F, Regala W, Lao V, et al. (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph . J Bacteriol 185: 2759–2773.
[19]  Larimer F, Chain P, Hauser L, Lamerdin J, Malfatti S, et al. (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium . Nature Biotechnol 22: 55–61.
[20]  Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, et al. (2002) The complete genome sequence of TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci U S A 99: 9509–9514.
[21]  Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, et al. (2006) The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium . J Bacteriol 188: 1473–1488.
[22]  Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, et al. (1998) The complete genome of the hyperthermophilic bacterium . Nature 392: 353–358.
[23]  Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.
[24]  Casjens S (2003) Prophages and bacterial genomics: What have we learned so far? Mol Microbiol 49: 277–300.
[25]  Lucchini S, Desiere F, Brussow H (1999) Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram positive bacteria. Virology 263: 427–435.
[26]  Weigele PR, Sampson L, Winn-Stapley D, Casjens SR (2005) Molecular genetics of bacteriophage P22 scaffolding protein's functional domains. J Mol Biol 348: 831–844.
[27]  Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB (1982) Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol 162: 729–773.
[28]  Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, et al. (2000) The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with non-marine phages. Limnol Oceanogr 42: 408–418.
[29]  Sternberg N, Weisberg R (1977) Packaging of coliphage lambda DNA. II. The role of gene D protein. J Mol Biol 117: 733–759.
[30]  Paul JH, Sullivan MB (2005) Marine phage genomics: What have we learned? Curr Opin Biotech 16: 299–307.
[31]  Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67: 238–276.
[32]  Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, et al. (2000) Novel genes coding for lithotrophic sulfur oxidation of GB17. J Bacteriol 182: 4677–4687.
[33]  Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG (2001) Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in GB17. J Bacteriol 183: 4499–4508.
[34]  Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8: 253–259.
[35]  Schutz M, Maldener I, Griesbeck C, Hauska G (1999) Sulfide-quinone reductase from Rhodobacter capsulatus: Requirement for growth, periplasmic localization, and extension of gene sequence analysis. J Bacteriol 181: 6516–6523.
[36]  Javor BJ, Wilmot DB, Vetter RD (1990) pH–Dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena. Arch Microbiol 154: 231–238.
[37]  Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol 67: 2873–2882.
[38]  Fani R, Brilli M, Lio P (2005) The origin and evolution of operons: The piecewise building of the proteobacterial histidine operon. J Mol Evol 60: 378–390.
[39]  Price MN, Huang KH, Arkin AP, Alm EJ (2005) Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res 15: 809–819.
[40]  Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. Fems Microbiol Lett 197: 171–178.
[41]  Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek Intl J Gen Mol Microbiol 71: 95–107.
[42]  Nelson DC, Hagen KD (1995) Physiology and biochemistry of symbiotic and free-living chemoautotrophic sulfur bacteria. Am Zool 35: 91–101.
[43]  Schwartz E, Friedrich B (2005) The H2-metabolizing prokaryotes. In: Dworkin M, editor. The prokaryotes: An evolving electronic resource for the microbiological community, release 3.14. New York: Springer-Verlag. Available: http://141.150.157.117:8080/prokPUB/inde?x.htm. Accessed 28 September 2006.
[44]  Nishihara H, Yaguchi T, Chung SY, Suzuki K, Yanagi M, et al. (1998) Phylogenetic position of an obligately chemoautotrophic, marine hydrogen-oxidizing bacterium, Hydrogenovibrio marinus, on the basis of 16S rRNA gene sequences and two form I RubisCO gene sequences. Arch Microbiol 169: 364–368.
[45]  Nishihara H, Miyata Y, Miyashita Y, Bernhard M, Pohlmann A, et al. (2001) Analysis of the molecular species of hydrogenase in the cells of an obligately chemolithoautotrophic, marine hydrogen-oxidizing bacterium, . Biosci Biotechnol Biochem 65: 2780–2784.
[46]  Nishihara H, Igarashi Y, Kodama T (1991) gen. nov., sp. nov., a marine obligately chemolithoautotrophic hydrogen-oxidizing bacterium. Int J Syst Bacteriol 41: 130–133.
[47]  Dross F, Geisler V, Lenger R, Theis F, Krafft T, et al. (1992) The quinone-reactive Ni/Fe-hydrogenase of . Eur J Biochem 206: 93–102.
[48]  Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Letters 479: 1–5.
[49]  Smith M, Finel M, Korolik V, Mendz G (2000) Characteristics of the aerobic respiratory chains of the microaerophiles and . Arch Microbiol 174: 1–10.
[50]  Steuber J (2001) Na+ translocation by bacterial NADH:quinone oxidoreductases: An extension to the complex-I family of primary redox pumps. Biochim Biophys Acta 1505: 45–56.
[51]  Kumagai H, Fujiwara T, Matsubara H, Saeki K (1997) Membrane localization, topology, and mutual stabilization of the rnfABC gene products in and implications for a new family of energy-coupling NADH oxidoreductases. Biochemistry 36: 5509–5521.
[52]  Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97: 13172–13177.
[53]  Hedl M, Sutherlin A, Wilding E, Mazzulla M, McDevitt D, et al. (2002) acetoacetyl-coenzyme A thiolase/3-hydroxy-3-methylglutaryl-coen?zymeA reductase, a dual-function protein of isopentenyl diphosphate biosynthesis. J Bacteriol 184: 2116.
[54]  Wilding EI, Brown JR, Bryant AP, Chalker AF, Holmes DJ, et al. (2000) Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in Gram-positive cocci. J Bacteriol 182: 4319–4327.
[55]  Humbelin M, Thomas A, Lin J, Li J, Jore J, et al. (2002) Genetics of isoprenoid biosynthesis in . Gene 297: 129–139.
[56]  Preisig O, Zufferey R, Thony-Meyer L, Appleby C, Hennecke H (1996) A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of . J Bacteriol 178: 1532–1538.
[57]  Hooper AB, Arciero DM, Bergmann D, Hendrich MP Zannoni D, editor. (2004) The oxidation of ammonia as an energy source in bacteria. Respiration in Archaea and Bacteria Volume 2: Dordrecht (the Netherlands): Springer. 121–147.
[58]  Jackson JB (2003) Proton translocation by transhydrogenase. FEBS Letts 545: 18–24.
[59]  Boonstra B, French CE, Wainwright I, Bruce NC (1999) The udhA gene of encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181: 1030–1034.
[60]  Mori S, Kawai S, Shi F, Mikami B, Murata K (2005) Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J Biol Chem 280: 24104–24112.
[61]  Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH (2000) Microbial genome analyses: Comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301: 75–100.
[62]  Ren Q, Paulsen IT (2005) Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Comput Biol 1: e27.. DOI: 10.1371/journal.pcbi.0010027.
[63]  Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57: 249–265.
[64]  Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24: 335–366.
[65]  So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, et al. (2004) A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 186: 623–630.
[66]  Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, et al. (2006) The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281: 7546–7555.
[67]  Felce J, Saier MH (2004) Carbonic anhydrase fused to anion transporters of the SulP family: Evidence for a novel type of bicarbonate transporter. J Mol Microbiol Biotechnol 8: 169–176.
[68]  Yoshizawa Y, Toyoda K, Arai H, Ishii M, Igarashi Y (2004) CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in strain MH-110. J Bacteriol 186: 5685–5691.
[69]  Hayashi NR, Arai H, Kodama T, Igarashi Y (1997) The novel genes, cbbQ and cbbO, located downstream from the RubisCO genes of Pseudomonas hydrogenothermophila, affect the conformational states and activity of RubisCO. Biochem Biophys Res Commun 241: 565–569.
[70]  Hayashi NR, Arai H, Kodama T, Igarashi Y (1999) The cbbQ genes located downstream of the form I and form II RubisCO genes, affect the activity of both RubisCOs. Biochem Biophys Res Commun 266: 177–183.
[71]  Badger M, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29: 161–173.
[72]  Gibson JL, Tabita FR (1996) The molecular regulation of the reductive pentose phosphate pathway in Proteobacteria and Cyanobacteria. Arch Microbiol 166: 141–150.
[73]  Kusian B, Bowien B (1997) Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 21: 135–155.
[74]  Shively JM, Van Keulen G, Meijer WG (1998) Something from almost nothing: Carbon dioxide fixation in chemoautotrophs. Ann Rev Microbiol 52: 191–230.
[75]  Falcone DL, Tabita FR (1993) Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of . J Bacteriol 175: 5066–5077.
[76]  Ding YR, Ronimus RS, Morgan HW (2000) Sequencing, cloning, and high-level expression of the pfp gene, encoding a ppi-dependent phosphofructokinase from the extremely thermophilic eubacterium . J Bacteriol. 182.
[77]  Ronimus RS, Morgan HW (2001) The biochemical properties and phylogenies of phosphofructokinases from extremophiles. Extremophiles 5: 357–373.
[78]  Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: What are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28: 335–352.
[79]  Hughes NJ, Clayton C, Chalk P, Kelly D (1998) porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate: acceptor oxidoreductases which mediate electron transport to NADP. J Bacteriol 180: 1119–1128.
[80]  Kather B, Stingl K, Van der Rest M, Altendorf K, Molenaar D (2000) Another unusual type of citric acid cycle enzyme in Helicobacter pylori: The malate:quinone oxidoreductase. J Bacteriol 182: 3204–3209.
[81]  Gehring U, Arnon DI (1972) Purification and properties of alpha-ketoglutarate synthase from a photosynthetic bacterium. J Biol Chem 247: 6963–6969.
[82]  Breese K, Boll M, Alt-Morbe J, Schagger H, Fuchs G (1998) Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium . Eur J Biochem 256: 148–154.
[83]  Jahn D, Verkamp E, Soll D (1992) Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17: 215–218.
[84]  van Veen HW (1997) Phosphate transport in prokaryotes: Molecules, mediators and mechanisms. Antonie Van Leeuwenhoek Intl J Gen Molec Microbiol 72: 299–315.
[85]  Prere MF, Chandler M, Fayet O (1990) Transposition in Shigella dysenteriae: isolation and analysis of IS911, a new member of the IS3 group of insertion sequences. J Bacteriol 172: 4090–4099.
[86]  Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, et al. (2006) Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature 439: 68–71.
[87]  Kolowith LC, Ingall ED, Benner R (2001) Composition and cycling of marine organic phosphorus. Limnol Oceanogr 46: 309–320.
[88]  Klotz MG, Arp DJ, Chain PSG, El-Sheikh AF, Hauser LJ, et al. (2006) The complete genome sequence of the marine, chemolithoautotrophic, ammonia-oxidizing bacterium ATCC19707. Appl Environ Microbiol 72: 6299–6315.
[89]  Watson SW (1965) Characteristics of a marine nitrifying bacterium, Sp. N. Limnol Oceanogr 10: 274–289.
[90]  Romling U, Gomelsky M, Galperin MY (2005) C-di-GMP: The dawning of a novel bacterial signalling system. Molec Microbiol 57: 629–639.
[91]  Zhulin I, Taylor B, Dixon R (1997) PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22: 331–333.
[92]  McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65: 445–462.
[93]  Wadhams GH, Armitage JP (2004) Making sense of it all: Bacterial chemotaxis. Nature Rev Molec Cell Biol 5: 1024–1037.
[94]  Kachlany SC, Planet PJ, DeSalle R, Fine DH, Figurski DH (2001) Genes for tight adherence of : From plaque to plague to pond scum. Trends Microbiol 9: 429–437.
[95]  Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229: 717–725.
[96]  McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61: 4375–4391.
[97]  Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27: 313–339.
[98]  Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, et al. (2004) Genome sequence of the deep-sea gamma-proteobacterium reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci U S A 101: 18036–18041.
[99]  Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51: 730–750.
[100]  Edgcomb VP, Molyneaux SJ, Saito MA, Lloyd K, Boer S, et al. (2004) Sulfide ameliorates metal toxicity for deep-sea hydrothermal vent archaea. Appl Environ Microbiol 70: 2551–2555.
[101]  Ewing BL, Hillier M, Wendl P, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185.
[102]  Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194.
[103]  Gordon D, Abajian C, Green P (1998) Consed: A graphical tool for sequence finishing. Genome Res 8: 195–202.
[104]  Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636–4641.
[105]  Badger JH, Olsen GJ (1999) CRITICA: Coding region identification tool invoking comparative analysis. Molec Biol Evol 16: 512–524.
[106]  Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28: 27–30.
[107]  McHardy AC, Goesmann A, Puhler A, Meyer F (2004) Development of joint application strategies for two microbial gene finders. Bioinformatics 20: 1622–1631.
[108]  Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, et al. (2003) GenDB—An open source genome annotation system for prokaryotic genomes. Nucleic Acids Res 31: 2187–2195.
[109]  Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Molec Biol 305: 567–580.
[110]  Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Molec Biol 340: 783–795.
[111]  Ren Q, Kang KH, Paulsen IT (2004) TransportDB: A relational database of cellular membrane transport systems. Nucleic Acids Res 32: D284–D288.
[112]  Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, et al. (2006) The integrated microbial genomes (IMG) system. Nucl Acids Res 34: D344–348.
[113]  Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. [computer program]. Sunderland (Massachusetts): Sinauer Associates.
[114]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25: 4876–4882.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133