全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2004 

Electroencephalographic Brain Dynamics Following Manually Responded Visual Targets

DOI: 10.1371/journal.pbio.0020176

Full-Text   Cite this paper   Add to My Lib

Abstract:

Scalp-recorded electroencephalographic (EEG) signals produced by partial synchronization of cortical field activity mix locally synchronous electrical activities of many cortical areas. Analysis of event-related EEG signals typically assumes that poststimulus potentials emerge out of a flat baseline. Signals associated with a particular type of cognitive event are then assessed by averaging data from each scalp channel across trials, producing averaged event-related potentials (ERPs). ERP averaging, however, filters out much of the information about cortical dynamics available in the unaveraged data trials. Here, we studied the dynamics of cortical electrical activity while subjects detected and manually responded to visual targets, viewing signals retained in ERP averages not as responses of an otherwise silent system but as resulting from event-related alterations in ongoing EEG processes. We applied infomax independent component analysis to parse the dynamics of the unaveraged 31-channel EEG signals into maximally independent processes, then clustered the resulting processes across subjects by similarities in their scalp maps and activity power spectra, identifying nine classes of EEG processes with distinct spatial distributions and event-related dynamics. Coupled two-cycle postmotor theta bursts followed button presses in frontal midline and somatomotor clusters, while the broad postmotor “P300” positivity summed distinct contributions from several classes of frontal, parietal, and occipital processes. The observed event-related changes in local field activities, within and between cortical areas, may serve to modulate the strength of spike-based communication between cortical areas to update attention, expectancy, memory, and motor preparation during and after target recognition and speeded responding.

References

[1]  Ardekani B, Choi S, Hossein-Zadeh GA, Porjesz B, Tanabe JL, et al. (2002) Functional magnetic resonance imaging of brain activity in the visual oddball task. Brain Res Cogn Brain Res 14: 347–356.
[2]  Amari S (1998) Natural gradient works efficiently in learning. Neural Comput 10: 251–276.
[3]  Anemueller J, Sejnowski TJ, Makeig S (2003) Complex independent component analysis of frequency domain electroencephalographic data. Neural Netw 16: 1311–1323.
[4]  Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4: 732–738.
[5]  Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Proc Mag 18: 14–30.
[6]  Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7: 1129–1159.
[7]  Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, et al. (2003) Human theta oscillations related to sensorimotor integration and spatial learning. J Neurosci 23: 4726–4736.
[8]  Courchesne E, Hillyard SA, Galambos R (1975) Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalogr Clin Neurophysiol 39: 131–143.
[9]  Cover TM, Thomas JA (1991) Elements of information theory. New York: John Wiley. 542 p.
[10]  Csicsvari J, Jamieson B, Wise K, Buzsaki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 23: 311–322.
[11]  Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J Cogn Neurosci 5: 162–176.
[12]  Delorme A, Makeig S (2004a) EEGLAB: MATLAB toolbox for electrophysiological data analysis. San Diego(California): Institute for Neural Computation, University of California at San Diego. Available: http://sccn.ucsd.edu/eeglab via the Internet. Accessed 10 Feb 2004.
[13]  Delorme A, Makeig S (2004b) EEGLAB: An open-source toolbox for analysis of EEG dynamics. J Neurosci Methods 134: 9–21.
[14]  Delorme A, Makeig S, Fabre-Thorpe M, Sejnowski TJ (2002) From single-trial EEG to brain area dynamics. Neurocomputing 44–46: 1057–1064.
[15]  Dien J, Spencer KM, Donchin E (2003) Localization of the event-related potential novelty response as defined by principal components analysis. Brain Res Cogn Brain Res 17: 637–650.
[16]  Ebmeier KP, Steele JD, MacKenzie DM, O'Carroll RE, Kydd RR, et al. (1995) Cognitive brain potentials and regional cerebral blood flow equivalents during two- and three-sound auditory “oddball tasks.”. Electroencephalogr Clin Neurophysiol 95: 434–443.
[17]  Elbert T, Rockstroh B (1987) Threshold regulation: A key to the understanding of the combined dynamics of EEG and event-related potentials. J Psychophysiol 4: 317–333.
[18]  Enghoff S (1999) Moving ICA and time-frequency analysis in event-related EEG studies of selective attention. Technical Report INC-9902. La Jolla (California): Institute for Neural Computation, University of California at San Diego.
[19]  Ford JM, Sullivan EV, Marsh L, White PM, Lim KO, et al. (1994) The relationship between P300 amplitude and regional gray matter volumes depends upon the attentional system engaged. Electroencephalogr Clin Neurophysiol 90: 214–228.
[20]  Forss N, Silen T (2001) Temporal organization of cerebral events: Neuromagnetic studies of the sensorimotor system. Rev Neurol (Paris) 157: 816–821.
[21]  Fries P, Reynolds J, Rorie A, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560–1563.
[22]  Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295: 2279–2282.
[23]  Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cereb Cortex 7: 374–85.
[24]  Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural mechanisms of top-down control during spatial and feature attention. NeuroImage 19: 496–512.
[25]  Halgren E, Squires NK, Wilson CL, Rohrbaugh JW, Babb TL, et al. (1980) Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science 210: 803–805.
[26]  Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, et al. (1995a) Intracerebral potentials to rare target and distractor auditory and visual stimuli. I: Superior temporal plane and parietal lobe. Electroencephalogr Clin Neurophysiol 94: 191–220.
[27]  Halgren E, Baudena P, Clarke JM, Heit G, Marinkovic K (1995b) Intracerebral potentials to rare target and distractor auditory and visual stimuli. II: Medial, lateral and posterior temporal lobe. Electroencephalogr Clin Neurophysiol 94: 229–250.
[28]  Hari R, Salmelin R, Makela JP, Salenius S, Helle M, et al. (1997) Magnetoencephalographic cortical rhythms. Int J Psychophysiol 26: 51–62.
[29]  Hasselmo M, Hay J, Ilun M, Gorchetchnikov A (2002) Neuromodulation, theta rhythm and rat spatial navigation. Neural Netw 15: 689–707.
[30]  Holroyd CB, Dien J, Coles MG (1998) Error-related scalp potentials elicited by hand and foot movements: Evidence for an output-independent error-processing system in humans. Neurosci Lett 242: 65–68.
[31]  Hupe J-M, James A, Girard P, Lomber SG, Dayne BR, et al. (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85: 134–145.
[32]  Ikeda A, Luders HO, Collura TF, Burgess RC, Morris HN, et al. (1996) Subdural potentials at orbitofrontal and mesial prefrontal areas accompanying anticipation and decision making in humans: A comparison with Bereitschaftspotential. Electroencephalogr Clin Neurophysiol 98: 206–212.
[33]  Jung T-P, Makeig S, Humphries C, Lee TW, McKeown MJ, et al. (2000a) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37: 163–178.
[34]  Jung T-P, Makeig S, Westerfield M, Townsend J, Courchesne E, et al. (2000b) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111: 1745–1758.
[35]  Jung T-P, Makeig S, McKeown MJ, Bell AJ, Lee T-W, et al. (2001a) Imaging brain dynamics using independent component analysis. P IEEE 89: 1107–1122.
[36]  Jung T-P, Makeig S, Westerfield M, Townsend J, Courchesne E, et al. (2001b) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14: 166–185.
[37]  Kahana MJ, Sekuler R, Caplan JO, Kirschen M, Madsen JR, et al. (1999) Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399: 781–784.
[38]  Klopp J, Marinkovic K, Chauvel P, Nenov V, Halgren E (2000) Early widespread cortical distribution of coherent fusiform face selective activity. Hum Brain Mapp 11: 286–293.
[39]  Knight RT, Scabini D, Woods DL, Clayworth CC (1989) Contributions of temporal-parietal junction to the human auditory P3. Brain Res 502: 109–116.
[40]  Kranczioch C, Debener S, Engel AK (2003) Event-related potential correlates of the attentional blink phenomenon. Brain Res Cogn Brain Res 17: 177–187.
[41]  Lee TW, Girolami M, Bell AJ, Sjenowski TJ (2000) A unifying information-theoretic framework for independent component analysis. Comput Math Appl 39: 1–21.
[42]  Luu P, Tucker DM (2001) Regulating action: Alternating activation of midline frontal and motor cortical networks. Clin Neurophysiol 112: 1295–1306.
[43]  Luu P, Tucker D, Makeig S (2004) Frontal midline theta and the error-related negativity: Neurophysiological mechanisms of action regulation. Psychophysiology. In press.
[44]  Makeig S (1993) Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol 86: 283–293.
[45]  Makeig S, Inlow M (1993) Lapses in alertness: Coherence of fluctuations in performance and the EEG spectrum. Electroencephalogr Clin Neurophysiol 86: 23–35.
[46]  Makeig S, Bell AJ, Jung T-P, Sejnowski TJ (1996) Independent component analysis of electroencephalographic data. In: Touretzky D, Mozer M, Hasselmo M, editors. Advances in neural information processing systems, Volume 8. Cambridge (Massachusetts): Massachusetts Institute of Technology Press. pp. 145–151.
[47]  Makeig S, Jung T-P, Ghahremani D, Bell AJ, Sejnowski TJ (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A 94: 10979–10984.
[48]  Makeig S, Westerfield M, Jung T-P, Covngton J, Townsend J, et al. (1999a) Functionally independent components of the late positive event-related potential during visual spatial attention. J Neurosci 19: 2665–2680.
[49]  Makeig S, Westerfield M, Townsend J, Jung T-P, Courchesne E (1999b) Functionally independent components of early event-related potentials in a visual spatial attention task. Philos T Roy Soc B 354: 1135–1144.
[50]  Makeig S, Jung T-P, Ghahremani D, Sejnowski TJ (2000) Independent component analysis of simulated ERP data. In: Nakata T, editor. Integrated human brain science. Amsterdam: Elsevier.
[51]  Makeig S, Westerfield M, Jung T-P, Enghoff S, Townsend J (2002) Dynamic brain sources of visual evoked responses. Science 295: 690–693.
[52]  Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8: 204–210.
[53]  Manthey S, Schubotz RL, von Cramon DY (2003) Premotor cortex in observing erroneous action: An fMRI study. Brain Res Cogn Brain Res 15: 296–307.
[54]  McArthur G, Budd T, Michie D (1999) The attentional blink and P300. Neuroreport 10: 3691–3695.
[55]  Mizuki Y, Tanaka M, Isozaki H, Nishijama H, Inanaga K, et al. (1980) Periodic appearance of theta rhythm in the frontal midline area during performance of a mental task. Electroencephalogr Clin Neurophysiol 49: 345–351.
[56]  Moores K, Clark C, Hadfield JL, Brown GC, Taylor DJ (2003) Investigating the generators of the scalp recorded visuo-verbal P300 using cortically constrained source localization. Hum Brain Mapp 18: 53–77.
[57]  Nunez P (1981) Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press. 484 p.
[58]  Pfurtscheller G, Aranibar A (1977) Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 42: 817–826.
[59]  Pfurtscheller G, Neuper C, Krausz G (2000) Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol 111: 1873–1879.
[60]  Polich J, Comerchero M (2003) P3a from visual stimuli: Typicality, task, and topography. Brain Topogr 15: 141–152.
[61]  Potts G, Tucker DM (2001) Frontal evaluation and posterior representation in target detection. Brain Res Cogn Brain Res 11: 147–156.
[62]  Potts G, Hirayasu Y, O'Donnell BF, Shenton ME, McCarley RW (1998) High-density recording and topographic analysis of the auditory oddball event-related potential in patients with schizophrenia. Biol Psychiatry 15: 982–989.
[63]  Rockstroh B, Muller M, Heinz A, Wagner M, Berg D, et al. (1996) Modulation of auditory responses during oddball tasks. Biol Psychol 43: 41–55.
[64]  Ruchkin DS, Johnson R, Canoune HL, Ritter W, Hammer M (1990) Multiple sources of P3b associated with different types of information. Psychophysiology 27: 157–176.
[65]  Ruchsow M, Grothe J, Spitzer M, Kiefer M (2002) Human anterior cingulate cortex is activated by negative feedback: Evidence from event-related potentials in a guessing task. Neurosci Lett 14: 203–206.
[66]  Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2: 539–550.
[67]  Seidenbecher T, Laxmi TR, Stork O, Paper H-C (2003) Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301: 846–850.
[68]  Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282: 1335–1338.
[69]  Simson R, Vaughn HG, Ritter W (1977) The scalp topography of potentials in auditory and visual Go/Nogo tasks. Electroencephalogr Clin Neurophysiol 43: 864–875.
[70]  Smith ME, Halgren E, Sokouk M, Gaudena P, Musolino A (1990) The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroencephalogr Clin Neurophysiol 76: 235–248.
[71]  Soltani M, Knight R (2001) Neural origins of the P300. Crit Rev Neurobiol 14: 199–224.
[72]  Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150: 1187–1188.
[73]  Townsend J, Courchesne E (1994) Parietal damage and narrow “spotlight” spatial attention. J Cogn Neurosci 6: 220–232.
[74]  Uchida S, Maehara T, Hirai N, Kawa K, Shimizu H, et al. (2003) Theta oscillation in the anterior cingulate and beta-1 oscillation in the medial temporal cortices: A human case report. J Clin Neurosci 10: 371–374.
[75]  Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: Specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23: 4308–4314.
[76]  von Stein A, Chiang C, Konig P (2000) Top-down processing mediated by interareal synchronization. Proc Nat Acad Sci U S A 97: 14748–14753.
[77]  Worden MS, Foxe JJ, Wang N, Simpson GV (2000) Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. J Neurosci 20: RC63.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133